
1

Analyzing the Performance of IWAVE on a
Cluster using HPCToolkit

John Mellor-Crummey and Laksono Adhianto
Department of Computer Science

Rice University
{johnmc,laksono}@rice.edu

TRIP Meeting March 30, 2012

Thursday, March 29, 2012

http://og-hpc.org/program2012/abstracts2012/#B5
http://og-hpc.org/program2012/abstracts2012/#B5
http://og-hpc.org/program2012/abstracts2012/#B5
http://og-hpc.org/program2012/abstracts2012/#B5

Challenges for HPC Practitioners
• Execution environments and applications are rapidly evolving

— architecture
– rapidly changing multicore microprocessor designs
– increasing scale of parallel systems
– growing use of accelerators, e.g. GPGPU

— applications
– MPI everywhere to threaded implementations
– adding additional scientific capabilities to existing applications
– maintaining multiple variants or configurations for particular problems

• Steep increase in application development effort to attain
performance, evolvability, and portability

• Application developers need to
— assess weaknesses in algorithms and their implementations
— improve scalability and performance within and across nodes
— adapt to changes in emerging architectures
— overhaul algorithms & data structures as needed

2
Thursday, March 29, 2012

Challenges for HPC Practitioners
• Execution environments and applications are rapidly evolving

— architecture
– rapidly changing multicore microprocessor designs
– increasing scale of parallel systems
– growing use of accelerators, e.g. GPGPU

— applications
– MPI everywhere to threaded implementations
– adding additional scientific capabilities to existing applications
– maintaining multiple variants or configurations for particular problems

• Steep increase in application development effort to attain
performance, evolvability, and portability

• Application developers need to
— assess weaknesses in algorithms and their implementations
— improve scalability and performance within and across nodes
— adapt to changes in emerging architectures
— overhaul algorithms & data structures as needed

2
Performance tools can play an important role as a guide

Thursday, March 29, 2012

Motivation
• In December 2011, a member of CRAY Chapel team was able

to achieve about 20x speedup
— multi-threaded program compiled for a single locale
— less than a day’s work

• In January 2011, Rice Coarray Fortran team detected
performance bottleneck in their HPCC FFT benchmark
— majority of the time was spent in executing communication to

perform a bit-reversal permutation
— changing the algorithm and using coarse-grain all-to-all

communication reduced the cost to only about 6%

• In December 2011, HPCToolkit team identified several
performance bottlenecks in a DOD procurement benchmark
— inefficient use of Posix I/O
— load imbalance when not power of 2 processors

• And so on ...
3

Thursday, March 29, 2012

HPCToolkit: Why it’s Cool
• It runs (almost) anywhere, anytime by anyone

— language independent (C, C++, Fortran, ...)
— programming model independent (MPI, OpenMP, UPC, ...)
— operating systems independent (any Linux flavor)
— architecture independent (x86_64, ppc64, MIPS)
— compiler independent (Intel, PGI, GNU, Pathscale, ...)
— runtime independent (MPICH, OpenMPI, GASNet, ...)

• Usable on production executions
— low overhead: sampling rather than instrumentation
— large number of processors

• It’s easy to use
— no need to rebuild code
— work for fully optimized code

• Effective performance analysis
— fine-grain attribution (lines, loops, procedures, call chains, ...)
— correlate measurements with code for actionable results

4
Thursday, March 29, 2012

Understanding Performance Measurements

• Four dimensions of performance data in HPCToolkit
— metrics: wallclock, L2 cache miss, cycles, flops, ...
— calling context: main -> a -> b -> ...
— processes or ranks: 0, 1, ..., P
— time: from the beginning of measurement to the end

• Warning: finding performance bottlenecks can be challenging
5

Calling context

Processes

Time
Metrics

Thursday, March 29, 2012

Understanding Performance Measurements

• Four dimensions of performance data in HPCToolkit
— metrics: wallclock, L2 cache miss, cycles, flops, ...
— calling context: main -> a -> b -> ...
— processes or ranks: 0, 1, ..., P
— time: from the beginning of measurement to the end

• Warning: finding performance bottlenecks can be challenging
5

Calling context

Processes

Time
Metrics

code centric

Thursday, March 29, 2012

Understanding Performance Measurements

• Four dimensions of performance data in HPCToolkit
— metrics: wallclock, L2 cache miss, cycles, flops, ...
— calling context: main -> a -> b -> ...
— processes or ranks: 0, 1, ..., P
— time: from the beginning of measurement to the end

• Warning: finding performance bottlenecks can be challenging
5

Calling context

Processes

Time
Metrics

code centric

time centric

Thursday, March 29, 2012

Code-centric Analysis with hpcviewer

6
Thursday, March 29, 2012

Code-centric Analysis with hpcviewer

6

source pane

navigation pane metric pane

Thursday, March 29, 2012

Code-centric Analysis with hpcviewer

6

view control
metric display

Thursday, March 29, 2012

Code-centric Analysis with hpcviewer

6

costs for
• inlined procedures
• loops
• function calls in full context

Thursday, March 29, 2012

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

7

Understanding Executions over Time

Time

Processes

Call
stack

Thursday, March 29, 2012

HPCToolkit’s Time-centric View

8
Thursday, March 29, 2012

HPCToolkit’s Time-centric View

8

C
ores

Thursday, March 29, 2012

HPCToolkit’s Time-centric View

8

Time

C
ores

Thursday, March 29, 2012

HPCToolkit’s Time-centric View

8

Time

C
ores

Call stack
for

selected
core

at selected
time

Thursday, March 29, 2012

HPCToolkit’s Time-centric View

8

Time

C
ores

Call stack view over time for selected core

Call stack
for

selected
core

at selected
time

Thursday, March 29, 2012

IWAVE - Rice Inversion Project (Symes, PI)
• Framework for finite difference simulation

— common services - memory, communication, I/O, job control
— prescribed interfaces - problem description, numerical schemes

• Applications written to the framework
— staggered grid acoustics with PML
— staggered grid isotropic elasticity with PML

• Portable - ISO C99, MPI, OpenMP

• Modeling engine for migration and inversion

9
Thursday, March 29, 2012

10

IWAVE on a Cluster
• Experimental Platforms

— DaVinci
– node: two 2.83 GHz Intel Westmere (6-core) processors, 48GB RAM
– interconnect: 4x QDR Inifinband (40Gb/s)
– GPFS fast scratch

— STIC
– node: two 2.4 GHz Intel Nehalem (4-core), 12GB RAM
– interconnect: 2 4x DDR Infiniband links per node (20Gb/s each)
– 11TB Panassas scratch

• IWAVE configuration studied
— asg package

– staggered grid finite difference (pressure, velocity) acoustic modeling
— 3D finite difference configuration
— compiled with icc, version 12.0.0

– -O3 -std=c99 -g
— SEAM 20M GRID, FOR SHOT S020433

Thursday, March 29, 2012

IWAVE Execution

• 8 x 6 x 4 MPI decomposition

• Model info
— SEAMHALF20M

– density info 808MB
– velocity info 808MB

• IWAVE run
— read velocity model

– broadcast to all processors
— read density model

– broadcast to all processors
— perform stencil calculations

to compute pressures and
velocities

— write traces to disk

11
Thursday, March 29, 2012

Time-centric view of IWAVE
• MPI decomposition 8 x 6 x 4
• 32 nodes, 6 cores each (192 processor cores), OpenMPI

12
w

rit
e

tra
ce

s

read inputs

st
en

ci
l c

al
cu

la
tio

ns

se
t u

p
co

m
m

un
ic

at
or

s

Thursday, March 29, 2012

IWAVE Stencil - Overall Performance

13

.51 FLOP
 per cycle

Thursday, March 29, 2012

IWAVE Stencil - Why Low Performance?

• Look at
LLC
misses to
see
demand
fetch from
memory

• Survey
resource
stalls from
any source

14

• LLC misses 3 orders
of magnitude lower
than cycles

• Resource stalls on
par with total cycles

Thursday, March 29, 2012

IWAVE - Looking at Resource Stall Causes

15

Dominant resource stalls
• LOADS
• CPU reservation station full

- can’t issue instructions
until operands available

Thursday, March 29, 2012

IWAVE - Looking at Memory System Usage

16

Analyze where the loads go
• L2 Hit - 1.51 x 1010

• L3 Hit - 1.08 x 109

• Memory - 2.07 x 108

Thursday, March 29, 2012

Memory Latency on Intel 5100 MCH

17

!"#$%&'()*+#,-"*#(.*!"/0&1*2#3"(,1*#(.*+45*30*!"/0&1*6#(.7'.3-!
!
!

89:;<=* ! ""!

!"#$%&'()''*%+,-&.'/&01%2'3+4&562'

!

!

7+5.8".4-'9&:$;4:#!$%&'()'*+!,-./0*.!1)2-!*+-!,-./0*!)&!3$4.-5#!6*!).!%0.7!
)897,*%&*!*7!&7*-!*+%*!(+-&!,/&&)&1!(,)*-!*,%::)5;!<3$-&5+!7&0=!8-%./,-.!*+-!
(,)*-!97,*)7&!%&'!'7-.!&7*!*%>-!)&*7!%557/&*!,-%'.!:7,!7(&-,.+)9!%&'!.&779!
,%::)5!+%*!%0.7!755/,!'/,)&1!%!(,)*-#!6:!5%5+-!%&'!8-87,=!,-1)7&!).!/&>&7(&;!
/.-!*+-!8-%./,-8-&*.!:,78!0%*-&5=!*7!'-5)9+-,!*+-!')::-,-&*!,-1)7&.!7:!
8-87,=#!!

<+%+0&4&%:'4-+4'+==&64'9&:$;4:#!?*+-,!:%5*7,.!*+%*!%::-5*!*+-.-!,-./0*.!%,-!
@AB!:,-C/-&5=;!D,7&*!E)'-!$/.!.9--';!&/8F-,!7:!57,-.;!.9--'!7:!GHI3!%&'!
&/8F-,!7:!GHI3!5+%&&-0.;!GHI3!H%&>.!%&'!@AB!9,-:-*5+-,.#!I00!*+-.-!5%&!
5+%&1-!*+-!7/*578-!7:!*+-!F-&5+8%,>.!').5/..-'#!J+-&!5789%,)&1!,-./0*.;!
-&./,-!*+-.-!9%,%8-*-,.!%,-!*+-!.%8-#!D7,!-K%890-;!/.)&1!'/%0L,%&>-'!
G633.!7:*-&!9,72)'-.!:7,!F-**-,!/*)0)M%*)7&!7:!*+-!8-87,=!5+%&&-0!%&'!
,-./0*)&1!)&!F-**-,!F%&'()'*+#!6:!&/8F-,!7:!GHI3!5+%&&-0.!).!)&5,-%.-';!*+-!
(7,>07%'!5%&!*+-&!F-!').*,)F/*-'!F-*(--&!*+-8!:7,!%&!%''-'!)&5,-%.-!)&!
F%&'()'*+!%.!(-00#!!@AB!A,-:-*5+)&1!%007(.!*+-!@AB!*7!F-1)&!9/00)&1!)&!
%'N%5-&*!'%*%!)&*7!075%0!5%5+-!(+)0-!)*!).!9,75-..)&1!9,-2)7/.!'%*%;!-::-5*)2-0=!
,-'/5)&1!*+-!%55-..!*)8-!*7!*+-!*7*%0!'%*%#!O+-.-!:%5*7,.!)&:0/-&5-!*+-!,-./0*.!
7:!8-%./,)&1!0%*-&5=!%&'!F%&'()'*+#!!

1
~6

~200

La
te

nc
y

(n
s)

Memory depth (MB)

Thursday, March 29, 2012

Principal Stencil Pattern

• Execution under study
— sgn_ts3d_210p012

– 10 points along
each coordinate axis

– sweep through memory along
the X coordinate dimension

18
Thursday, March 29, 2012

IWAVE Tuning Recommendations
• Computation vs. communication

— communication for the example studied is ~27% of iwave_run
– compute on more data per core for higher parallel efficiency

— no communication/computation overlap

• I/O
— IWAVE uses serial Posix I/O for its input
— using HDF5 and parallel I/O would be a higher performance choice

• Stencil calculations
— IWAVE’s stencil calculations are latency bound

– spend most of their time waiting for data from L2 cache
— need to make better use of the memory hierarchy

– unrolling once in Y and Z coordinate dimensions will reuse data values
immediately

 currently, temporal reuse along Y and Z axis is long distance
 unrolling in Y and Z: immediately reuse 9 of every 10 values loaded

– pointer-based data access inhibits compiler-based tiling
 tiling along Y and Z will be important for good cache reuse with large data

19
Thursday, March 29, 2012

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with DataShift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org
Thursday, March 29, 2012

http://hpctoolkit.org
http://hpctoolkit.org

HPCToolkit Status
• Operational today on

— 64- and 32-bit x86 systems running Linux (including Cray XT/E/K)
— IBM Blue Gene/P
— IBM Power7 systems running Linux

• Emerging capabilities
— IBM Blue Gene/Q
— NVIDIA GPU

• measurement and reporting using GPU hardware counters
— data centric analysis

• Available as open source software at http://hpctoolkit.org

21
Thursday, March 29, 2012

Ongoing Work
• Homogeneous nodes

— measurement and analysis for massive numbers of threads
— “blame shifting” to pinpoint and quantify causes of idleness in

OpenMP programs

• Heterogeneous nodes
— “blame shifting” to pinpoint and quantify causes of CPU and GPU

idleness in hybrid programs
— derived metrics for GPU

• Bandwidth monitoring of communication and I/O

• Future enhancements
— support for Intel MIC
— provide higher-level prescriptive feedback

22
Thursday, March 29, 2012

References
• HPCToolkit Project: http://hpctoolkit.org

• David Levinthal. Performance Analysis Guide for Intel®
CoreTM i7 Processor and Intel® XeonTM 5500 processors,
Version 1.0, http://software.intel.com/sites/products/collateral/
hpc/vtune/performance_analysis_guide.pdf

23
Thursday, March 29, 2012

