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Challenges for HPC Practitioners
• Execution environments and applications are rapidly evolving 

— architecture
– rapidly changing multicore microprocessor designs
– increasing scale of parallel systems
– growing use of accelerators, e.g. GPGPU

— applications
– MPI everywhere to threaded implementations
– adding additional scientific capabilities to existing applications 
– maintaining multiple variants or configurations for particular problems

• Steep increase in application development effort to attain 
performance, evolvability, and portability

• Application developers need to 
— assess weaknesses in algorithms and their implementations
— improve scalability and performance within and across nodes
— adapt to changes in emerging architectures
— overhaul algorithms & data structures as needed
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Motivation
• In December 2011, a member of CRAY Chapel team was able 

to achieve about 20x speedup 
— multi-threaded program compiled for a single locale
— less than a day’s work

• In January 2011, Rice Coarray Fortran team detected 
performance bottleneck in their HPCC FFT benchmark 
— majority of the time was spent in executing communication to 

perform a bit-reversal permutation
— changing the algorithm and using coarse-grain all-to-all 

communication reduced the cost to only about 6%

• In December 2011, HPCToolkit team identified several 
performance bottlenecks in a DOD procurement benchmark
— inefficient use of Posix I/O
— load imbalance when not power of 2 processors

• And so on ...
3
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HPCToolkit: Why it’s Cool
• It runs (almost) anywhere, anytime by anyone

— language independent (C, C++, Fortran, ...)
— programming model independent (MPI, OpenMP, UPC, ...)
— operating systems independent (any Linux flavor)
— architecture independent (x86_64, ppc64, MIPS)
— compiler independent (Intel, PGI, GNU, Pathscale, ...)
— runtime independent (MPICH, OpenMPI, GASNet, ...)

• Usable on production executions
— low overhead: sampling rather than instrumentation
— large number of processors

• It’s easy to use
— no need to rebuild code
— work for fully optimized code

• Effective performance analysis
— fine-grain attribution (lines, loops, procedures, call chains, ... )
— correlate measurements with code for actionable results
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Understanding Performance Measurements

• Four dimensions of performance data in HPCToolkit
— metrics: wallclock, L2 cache miss, cycles, flops, ...
— calling context: main -> a -> b -> ...
— processes or ranks: 0, 1, ..., P
— time: from the beginning of measurement to the end 

• Warning: finding performance bottlenecks can be challenging
5
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Code-centric Analysis with hpcviewer
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Code-centric Analysis with hpcviewer
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Code-centric Analysis with hpcviewer

6

view control
metric display

Thursday, March 29, 2012



Code-centric Analysis with hpcviewer
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costs for
• inlined procedures
• loops
• function calls in full context
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• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch: 

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution
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HPCToolkit’s Time-centric View
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HPCToolkit’s Time-centric View
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HPCToolkit’s Time-centric View
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HPCToolkit’s Time-centric View
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IWAVE - Rice Inversion Project (Symes, PI)
• Framework for finite difference simulation

— common services - memory, communication, I/O, job control
— prescribed interfaces - problem description, numerical schemes

• Applications written to the framework
— staggered grid acoustics with PML
— staggered grid isotropic elasticity with PML

• Portable - ISO C99, MPI, OpenMP

• Modeling engine for migration and inversion
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IWAVE on a Cluster
• Experimental Platforms

— DaVinci
– node: two 2.83 GHz Intel Westmere (6-core) processors, 48GB RAM
– interconnect: 4x QDR Inifinband (40Gb/s)
– GPFS fast scratch

— STIC
– node: two 2.4 GHz Intel Nehalem (4-core), 12GB RAM
– interconnect: 2 4x DDR Infiniband links per node (20Gb/s each)
– 11TB Panassas scratch

• IWAVE configuration studied
— asg package

– staggered grid finite difference (pressure, velocity) acoustic modeling
— 3D finite difference configuration
— compiled with icc, version 12.0.0

– -O3 -std=c99 -g
— SEAM 20M GRID, FOR SHOT S020433
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IWAVE Execution

• 8 x 6 x 4 MPI decomposition

• Model info
— SEAMHALF20M

– density info 808MB
– velocity info 808MB

• IWAVE run
— read velocity model

– broadcast to all processors
— read density model

– broadcast to all processors
— perform stencil calculations

to compute pressures and 
velocities

— write traces to disk
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Time-centric view of IWAVE
• MPI decomposition 8 x 6 x 4
• 32 nodes, 6 cores each (192 processor cores), OpenMPI
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IWAVE Stencil - Overall Performance
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.51 FLOP
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IWAVE Stencil - Why Low Performance?

• Look at 
LLC 
misses to 
see 
demand 
fetch from 
memory

• Survey 
resource 
stalls from 
any source 
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• LLC misses 3 orders 
of magnitude lower 
than cycles

• Resource stalls on 
par with total cycles
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IWAVE - Looking at Resource Stall Causes
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Dominant resource stalls
• LOADS
• CPU reservation station full

- can’t issue instructions 
until operands available
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IWAVE - Looking at Memory System Usage

16

Analyze where the loads go
• L2 Hit - 1.51 x 1010

• L3 Hit - 1.08 x 109

• Memory - 2.07 x 108
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Memory Latency on Intel 5100 MCH
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Principal Stencil Pattern

• Execution under study
— sgn_ts3d_210p012

– 10 points along 
each coordinate axis

– sweep through memory along
the X coordinate dimension
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IWAVE Tuning Recommendations
• Computation vs. communication

— communication for the example studied is ~27% of iwave_run
– compute on more data per core for higher parallel efficiency

— no communication/computation overlap

• I/O
— IWAVE uses serial Posix I/O for its input
— using HDF5 and parallel I/O would be a higher performance choice

• Stencil calculations
— IWAVE’s stencil calculations are latency bound

– spend most of their time waiting for data from L2 cache
— need to make better use of the memory hierarchy

– unrolling once in Y and Z coordinate dimensions will reuse data values 
immediately

 currently, temporal reuse along Y and Z axis is long distance
 unrolling in Y and Z: immediately reuse 9 of every 10 values loaded

– pointer-based data access inhibits compiler-based tiling 
 tiling along Y and Z will be important for good cache reuse with large data
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HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior 
over Time

Assess Imbalance 
and Variability 

Associate Costs with DataShift Blame from 
Symptoms to Causes 

Pinpoint & Quantify 
Scaling Bottlenecks

hpctoolkit.org
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HPCToolkit Status
• Operational today on

— 64- and 32-bit x86 systems running Linux (including Cray XT/E/K)
— IBM Blue Gene/P
— IBM Power7 systems running Linux

• Emerging capabilities
— IBM Blue Gene/Q
— NVIDIA GPU

• measurement and reporting using GPU hardware counters
— data centric analysis

• Available as open source software at http://hpctoolkit.org
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Ongoing Work
• Homogeneous nodes

— measurement and analysis for massive numbers of threads
— “blame shifting” to pinpoint and quantify causes of idleness in 

OpenMP programs

• Heterogeneous nodes
— “blame shifting” to pinpoint and quantify causes of CPU and GPU 

idleness in hybrid programs
— derived metrics for GPU

• Bandwidth monitoring of communication and I/O 

• Future enhancements
— support for Intel MIC
— provide higher-level prescriptive feedback
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