

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University

{johnmc,laksono}@rice.edu

RICE

1

TRIP Meeting March 30, 2012

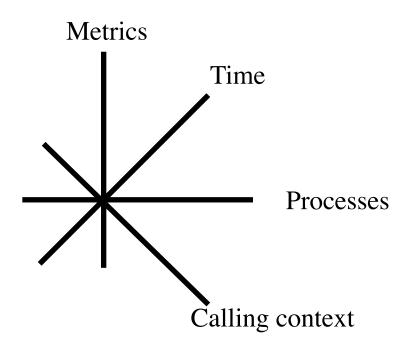
Challenges for HPC Practitioners

- Execution environments and applications are rapidly evolving
 - architecture
 - rapidly changing multicore microprocessor designs
 - increasing scale of parallel systems
 - growing use of accelerators, e.g. GPGPU
 - applications
 - MPI everywhere to threaded implementations
 - adding additional scientific capabilities to existing applications
 - maintaining multiple variants or configurations for particular problems
- Steep increase in application development effort to attain performance, evolvability, and portability
- Application developers need to
 - assess weaknesses in algorithms and their implementations
 - improve scalability and performance within and across nodes
 - adapt to changes in emerging architectures
 - overhaul algorithms & data structures as needed

Challenges for HPC Practitioners

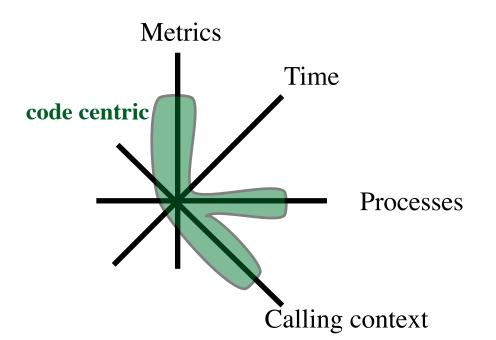
- Execution environments and applications are rapidly evolving
 - architecture
 - rapidly changing multicore microprocessor designs
 - increasing scale of parallel systems
 - growing use of accelerators, e.g. GPGPU
 - applications
 - MPI everywhere to threaded implementations
 - adding additional scientific capabilities to existing applications
 - maintaining multiple variants or configurations for particular problems
- Steep increase in application development effort to attain performance, evolvability, and portability
- Application developers need to
 - assess weaknesses in algorithms and their implementations
 - improve scalability and performance within and across nodes
 - adapt to changes in emerging architectures
 - overhaul algorithms & data structures as needed

Performance tools can play an important role as a guide

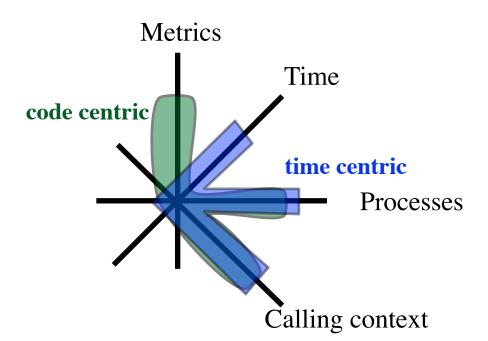

Motivation

- In December 2011, a member of CRAY Chapel team was able to achieve about 20x speedup
 - multi-threaded program compiled for a single locale
 - less than a day's work
- In January 2011, Rice Coarray Fortran team detected performance bottleneck in their HPCC FFT benchmark
 - majority of the time was spent in executing communication to perform a bit-reversal permutation
 - changing the algorithm and using coarse-grain all-to-all communication reduced the cost to only about 6%
- In December 2011, HPCToolkit team identified several performance bottlenecks in a DOD procurement benchmark
 - inefficient use of Posix I/O
 - load imbalance when not power of 2 processors
- And so on ...

HPCToolkit: Why it's Cool


- It runs (almost) anywhere, anytime by anyone
 - language independent (C, C++, Fortran, ...)
 - programming model independent (MPI, OpenMP, UPC, ...)
 - operating systems independent (any Linux flavor)
 - architecture independent (x86_64, ppc64, MIPS)
 - compiler independent (Intel, PGI, GNU, Pathscale, ...)
 - runtime independent (MPICH, OpenMPI, GASNet, ...)
- Usable on production executions
 - low overhead: sampling rather than instrumentation
 - large number of processors
- It's easy to use
 - no need to rebuild code
 - work for fully optimized code
- Effective performance analysis
 - fine-grain attribution (lines, loops, procedures, call chains, ...)
 - correlate measurements with code for actionable results

Understanding Performance Measurements


- Four dimensions of performance data in HPCToolkit
 - metrics: wallclock, L2 cache miss, cycles, flops, ...
 - calling context: main -> a -> b -> ...
 - processes or ranks: 0, 1, ..., P
 - time: from the beginning of measurement to the end
- Warning: finding performance bottlenecks can be challenging

Understanding Performance Measurements

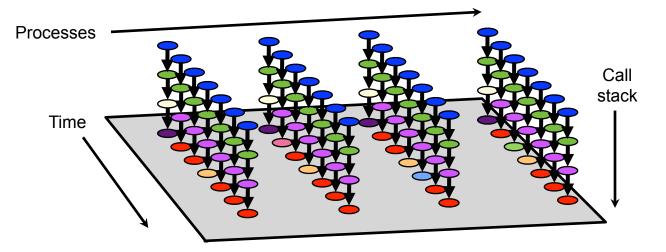
- Four dimensions of performance data in HPCToolkit
 - metrics: wallclock, L2 cache miss, cycles, flops, ...
 - calling context: main -> a -> b -> ...
 - processes or ranks: 0, 1, ..., P
 - time: from the beginning of measurement to the end
- Warning: finding performance bottlenecks can be challenging

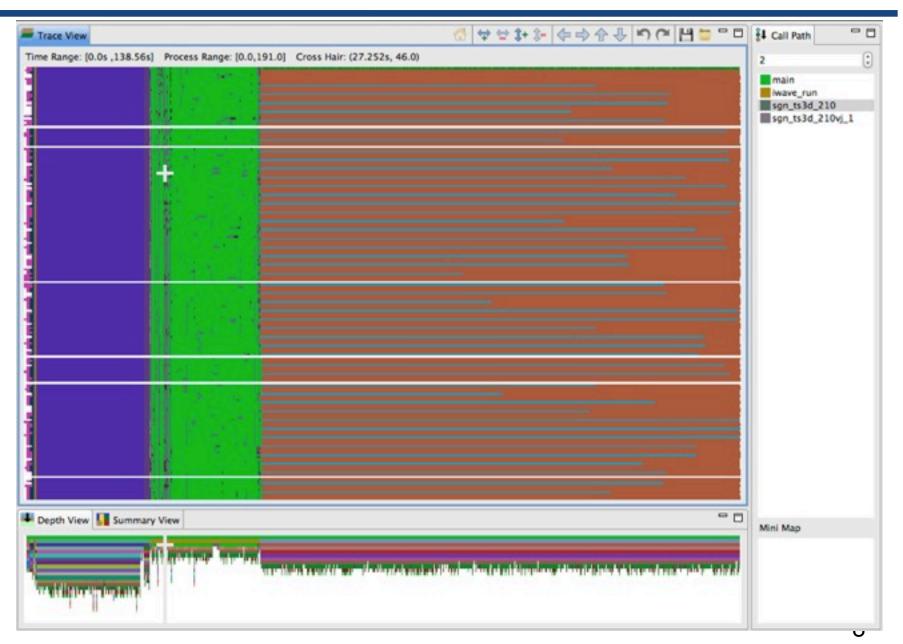
Understanding Performance Measurements

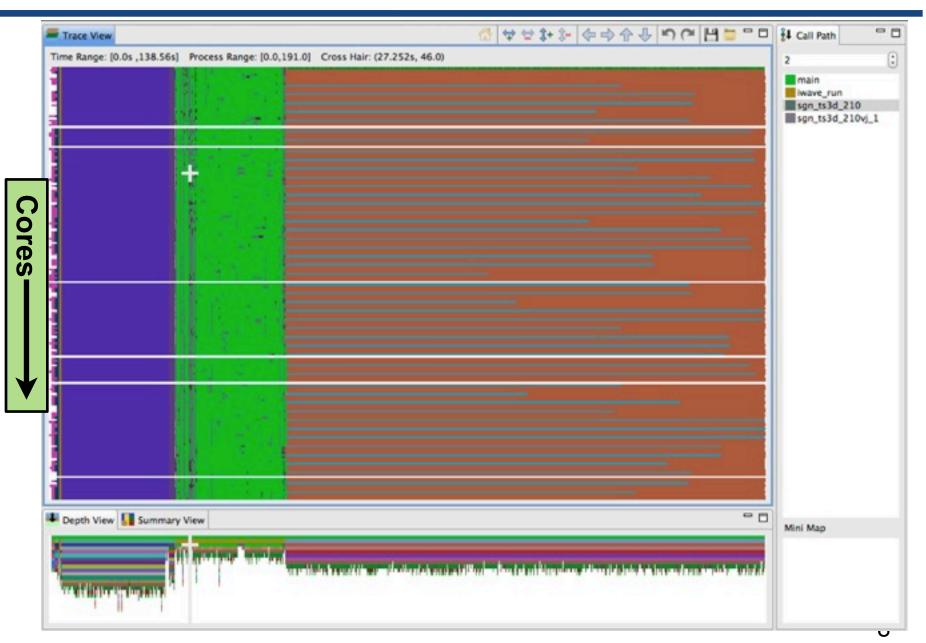
- Four dimensions of performance data in HPCToolkit
 - metrics: wallclock, L2 cache miss, cycles, flops, ...
 - calling context: main -> a -> b -> ...
 - processes or ranks: 0, 1, ..., P
 - time: from the beginning of measurement to the end
- Warning: finding performance bottlenecks can be challenging

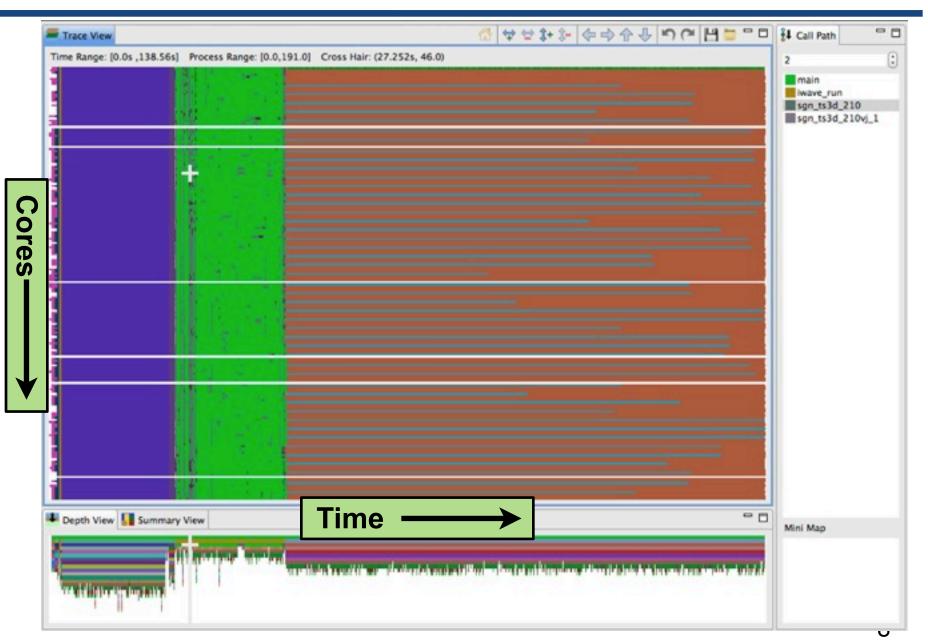
hpcviewer: MOAB: mbperf_iMesh 200 B (Barcelon	a 2360 SE)	\Box
🞯 mbperf_iMesh.cpp 🖾 🞯 TypeSequenceManager.hpp 🖾 🞯 stl_tree.h		
<pre>22 * Define less-than comparison for EntitySequence pointers as 23 * of the entity handles in the pointed-to EntitySequences. 24 */ 25 class SequenceCompare {</pre>	a comparison	٥
<pre>25 class SequenceCompare { 26 public: bool operator()(const EntitySequence* a, const En</pre>	tySequence* b)	const
<pre>27 { return a->end_handle() < b->start_handle(); }</pre>		×
28 };		, T
Calling Context View Callers View		- 8
] 🛧 🕂 🌜 fee 🕅		
Scope	PAPI_L1_DCM (I) V	
▼ main	8.63e+08 100 %	1.13e+11 100 %
testB(void*, int, double const*, int const*)	8.35e+08 96.7%	
inlined from mbperf_iMesh.cpp: 261	6.81e+08 78.9%	0.98e+11 86.5%
Ioop at mbperf_iMesh.cpp: 280-313	3.43e+08 39.8%	3.37e+10 29.9%
Image: mesh_getvtxarrcoords_	3.20e+08 37.1%	2.18e+10 19.3%
MBCore::get_coords(unsigned long const*, int, double*) co	3.20e+08 37.1%	2.16e+10 19.1%
Ioop at MBCore.cpp: 681–693	3.20e+08 37.1%	2.16e+10 19.1%
inlined from stl_tree.h: 472	2.04e+08 23.7%	9.38e+09 8.3%
▼ loop at stl_tree.h: 1388	2.04e+08 23.6%	9.37e+09 8.3%
inlined from TypeSequenceManager.hpp: 27	1.78e+08 20.6%	8.56e+09 7.6%
TypeSequenceManager.hpp: 27	1.78e+08 20.6%	
) 4 Þ (

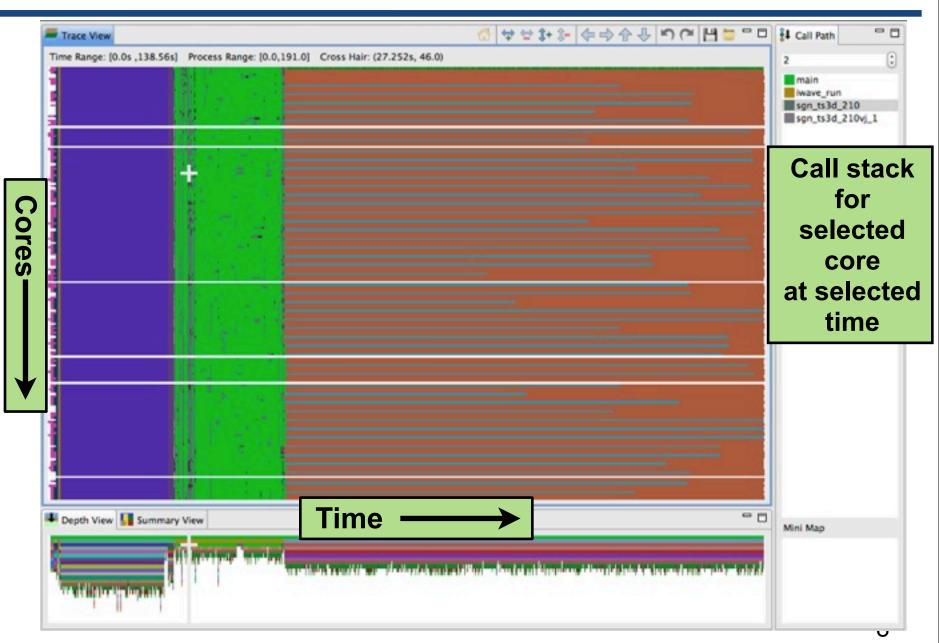
hpcviewer: MOAB: mbperf_iMesh 200 B (Barcelor	na 2360 SE)	\square
👻 mbperf_iMesh.cpp 🛛 👻 TypeSequenceManager.hpp 🖾 👻 stl_tree.h		
22 * Define less-than comparison for EntitySequence pointers as 23 * of the entity handles in the pointed-to EntitySequences. 24 */ 25 class SequenceCompare {	a comparison	
<pre>26 public: bool o 27 { return a-> SOURCE pane start_handle(); } 28 };</pre>	itySequence* b)	const
Calling Context View Callers View		- 8
] 🕆 😃 [🌜 🕅 🕅		
Scope	PAPI_L1_DCM (I) ▼	
▼ main	8.63e+08 100 %	1.13e+11 100 %
testB(void*, int, double const*, int const*)		1.10e+11 97.6%
inlined from mbperf_iMesh.cpp: 261		0.98e+11 86.5%
Ioop at mbperf_iMesh.cpp: 280-313 Navigation pane		tric pane
▼ B⇒ imesh_getvtxarrcoords_	3.20e+08 37.1%	
MBCore::get_coords(unsigned long const*, int, double*) c		2.16e+10 19.1%
▼ loop at MBCore.cpp: 681–693	3.20e+08 37.1%	2.16e+10 19.1%
inlined from stl_tree.h: 472		9.38e+09 8.3%
▼ loop at stl_tree.h: 1388	2.04e+08 23.6%	
inlined from TypeSequenceManager.hpp: 27		A
TypeSequenceManager.hpp: 27	1.78e+08 20.6%	8.56e+09 7.6%
) 4 +

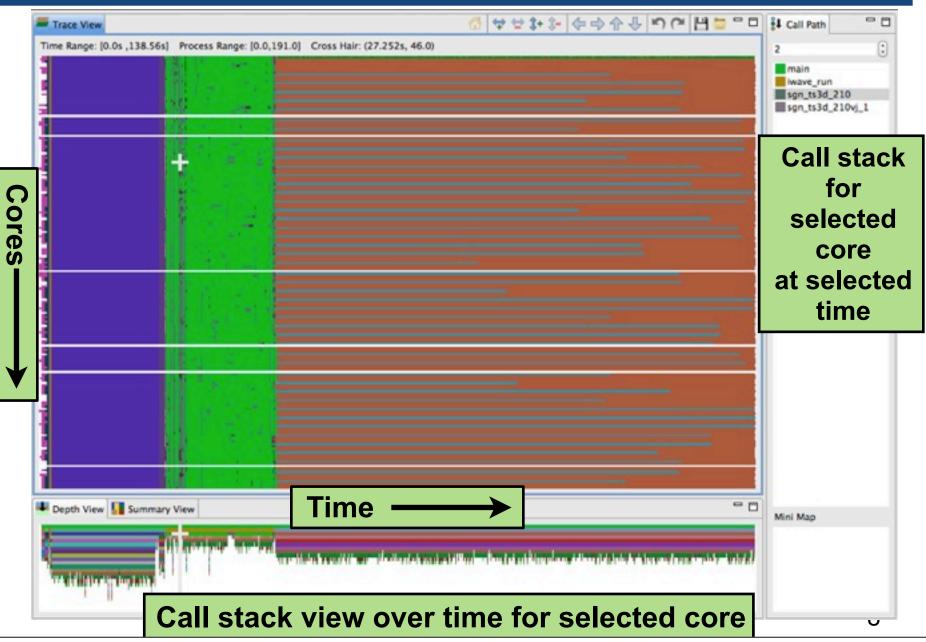

hpcviewer: MOAB: mbperf_iMesh 200 B (Barcelona 2360 SE)	\bigcirc
👻 mbperf_iMesh.cpp 🖾 👳 TypeSequenceManager.hpp 🖾 🗠 stl_tree.h	- 0
<pre>22 * Define less-than comparison for EntitySequence pointers as a comparison 23 * of the entity handles in the pointed-to EntitySequences. 24 */ 25 class SequenceCompare { 26 public: bool operator()(const EntitySequence* a, const EntitySequence* b) const 27 { return a->end_handle() < b->start_handle(); } 28 };</pre>	
Calling Context View Callers View 🕂 Flat View 🗸 View Control	- 8
] ☆ ♣ 🌜 🕅 I ሩ — metric display	
Scope PAPI_L1_DCM (I) ▼ PAPI_TOT	CYC (I) P
▼ main 8.63e+08 100 % 1.13e+1	1 100 %
▼ B> testB(void*, int, double const*, int const*) 8.35e+08 96.7% 1.10e+1	1 97.6%
▼ inlined from mbperf_iMesh.cpp: 261 6.81e+08 78.9% 0.98e+1	1 86.5%
▼ loop at mbperf_iMesh.cpp: 280-313 3.43e+08 39.8% 3.37e+1	29.9%
▼	19.3%
MBCore::get_coords(unsigned long const*, int, double*) cc 3.20e+08 37.1% 2.16e+1	0 19.1%
▼ loop at MBCore.cpp: 681–693 3.20e+08 37.1% 2.16e+1	19.1%
▼ inlined from stl_tree.h: 472 2.04e+08 23.7% 9.38e+0	9 8.3%
▼ loop at stl_tree.h: 1388 2.04e+08 23.6% 9.37e+0	8.38
inlined from TypeSequenceManager.hpp: 27 1.78e+08 20.6% 8.56e+0	9 7.68
TypeSequenceManager.hpp: 27 1.78e+08 20.6% 8.56e+0	9 7.68
) 4 +


hpcviewer: MOAB: mbperf_iMesh 200 B (Barcelon)	na 2360 SE) 💿
👻 mbperf_iMesh.cpp 🖾 🞯 TypeSequenceManager.hpp 🖾 🞯 stl_tree.h	
<pre>23 * of the entity handles in the pointed-to EntitySequCOStS 24 */ 25 class SequenceCompare { 26 public: bool operator()(const EntitySequence* c</pre>	for d procedures on calls in full context
Calling Context View Callers View	
] 🕆 🖶 💧 🕅 🕅	
Scope	PAPI_L1_DCM (I) V PAPI_TOT_CYC (I) P
▼ main	8.63e+08 100 % 1.13e+11 100 %
E> testB(void*, int, double const*, int const*)	8.35e+08 96.7% 1.10e+11 97.6%
inlined from mbperf_iMesh.cpp: 261	
Ioop at mbperf_iMesh.cpp: 280-313	3.43e+08 39.8% 3.37e+10 29.9% 3.20e+08 37.1% 2.18e+10 19.3%
imesh_getvtxarrcoords_	
MBCore::get_coords(unsigned long const*, int, double*) c	3.20e+08 37.1% 2.16e+10 19.1%
Ioop at MBCore.cpp: 681–693	2.04e+08 23.7% 9.38e+09 8.3%
<pre>inlined from stl_tree.h: 472 V loop at stl_tree.h: 1388</pre>	2.04e+08 23.6% 9.37e+09 8.3%
inlined from TypeSequenceManager.hpp: 27	
TypeSequenceManager.hpp: 27	1.78e+08 20.6% 8.56e+09 7.6%
rypesequencemanager.npp. z/	

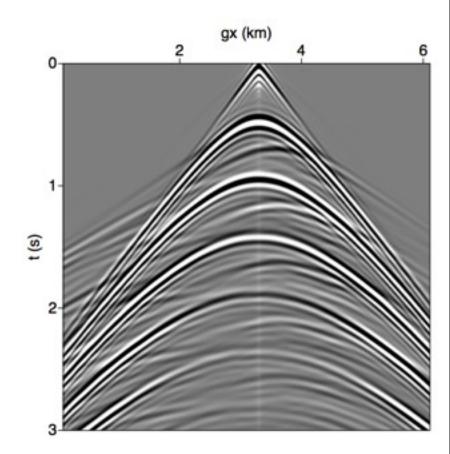

Understanding Executions over Time


- Profiling compresses out the temporal dimension
 —temporal patterns, e.g. serialization, are invisible in profiles
- What can we do? Trace call path samples
 - -sketch:
 - N times per second, take a call path sample of each thread
 - organize the samples for each thread along a time line
 - view how the execution evolves left to right
 - what do we view?


assign each procedure a color; view a depth slice of an execution

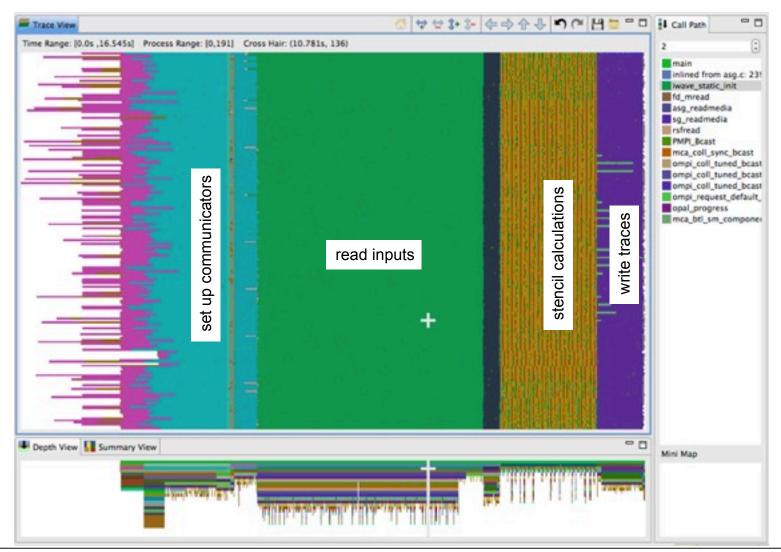


IWAVE - Rice Inversion Project (Symes, PI)


- Framework for finite difference simulation
 - common services memory, communication, I/O, job control
 - prescribed interfaces problem description, numerical schemes
- Applications written to the framework
 - staggered grid acoustics with PML
 - staggered grid isotropic elasticity with PML
- Portable ISO C99, MPI, OpenMP
- Modeling engine for migration and inversion

IWAVE on a Cluster

- Experimental Platforms
 - DaVinci
 - node: two 2.83 GHz Intel Westmere (6-core) processors, 48GB RAM
 - interconnect: 4x QDR Inifinband (40Gb/s)
 - GPFS fast scratch
 - STIC
 - node: two 2.4 GHz Intel Nehalem (4-core), 12GB RAM
 - interconnect: 2 4x DDR Infiniband links per node (20Gb/s each)
 - 11TB Panassas scratch
- IWAVE configuration studied
 - asg package
 - staggered grid finite difference (pressure, velocity) acoustic modeling
 - 3D finite difference configuration
 - compiled with icc, version 12.0.0
 - -O3 -std=c99 -g
 - SEAM 20M GRID, FOR SHOT S020433


IWAVE Execution

- 8 x 6 x 4 MPI decomposition
- Model info
 - SEAMHALF20M
 - density info 808MB
 - velocity info 808MB
- IWAVE run
 - read velocity model
 - broadcast to all processors
 - read density model
 - broadcast to all processors
 - perform stencil calculations to compute pressures and velocities
 - write traces to disk

Time-centric view of IWAVE

- MPI decomposition 8 x 6 x 4
- 32 nodes, 6 cores each (192 processor cores), OpenMPI

IWAVE Stencil - Overall Performance

sgn210_3c		
	ma ivdep	
257	for (_pxend = _px + nx; _px < _pxend;)	
258		
259	vx8 = vx9[-1]; vx7 = vx9[-2]; vx6 = vx9[-3];	
260	vx5 = vx9[-4]; vx4 = vx9[-5]; vx3 = vx9[-6];	
261	vx2 = vx9[-7]; vx1 = vx9[-8]; vx8 = vx9[-9];	
262		
263	vx9 = *_vx9++;	
264		
265	delta = ((vx9 - vx0) * C5x + (vx8 - vx1) * C4x + (vx7 - vx2) * C3x + (vx6 - vx3) * C2x + (vx5 - vx4) * C1x +	
266	$((*_vy_{9++}) - (*_vy_{8++})) * (5y + ((*_vy_{8++}) - (*_vy_{1++})) * (4y + ((*_vy_{7++}) - (*_vy_{2++})) * (3y + ((*_vy_{8++}))))))$	
267	((*_vy6++) - (*_vy3++)) * (2y + ((*_vy5++) - (*_vy4++)) * (1y +	
868	$((*_vz_{9++}) - (*_vz_{8++})) * (5z + ((*_vz_{8++}) - (*_vz_{1++})) * (4z + ((*_vz_{7++}) - (*_vz_{2++})) * (3z + ((*_vz_{1++})) * (3z + ((*_vz_{1++})))))))))))))))))))))))))))))))))))$	
269 270	((*_vz6++) - (*_vz3++)) * (2z + ((*_vz5++) - (*_vz4++)) * (1z) * (*_mpx++);	
271	(*_px) = (*_px) * (*ratio_x++) + delta * (*recip_x++);	
272	_px++;	
273	-board	
274	(*_py) = (*_py) * ratio_y + delta * recip_y;	
275		
276		
277	(*_pz) = (*_pz) * ratio_z + delta * recip_z;	
278	_pz++;	
279)	
Calling Co	ntext View 23 🗞 Callers View 🗄 Fiat View	
	fto [17] (A A A	

Scope	PAPI_TOT_CYC:Sum (I)	PAPI_L2_TCM.Sum (I)	PAPI_TLB_DM.Sum (I)	PAPI_FP_INS.Sum (I)	
Experiment Aggregate Metrics	1.36e+12 100 %	1.42e+10 100 %	4.10e+08 100 %	5.01e+11 100 %	
▼main	1.360+12 100.0	1.42e+10 100.0	4.10e+08 100 %	5.01e+11 100 %	
Vloop at asg.c: 133	1.36e+12 100.0	1.42e+10 100.0	4.10e+08 100 %	5.01e+11 100 %	
▼loop at asg.c: 239	1.36e+12 100.0	1.42e+10 100.0	4.10e+08 100 %	5.01e+11 100 %	
▼loop at asg.c: 239	1.36e+12 100.0	1.42e+10 100.0	4.10e+08 100 %	5.01e+11 100 %	
▼ B>lwave_run	1.36e+12 100.0	1.42e+10 99.9%	4.10e+08 99.9%	5.01e+11 100.0	
▼ 80 sgn_ts3d_210	8.83c+11 64.7%	1.20e+10 84.3%	2.15e+08 52.4%	5.00e+11 99.8%	
▼ B>sgn_ts3d_210p012	3.660+11 26.8%	4.87e+09 34.2%	9.54e+07 23.3%	1.82e+11 36.2%	.51 FLOP
Vloop at sgn210_3d.c: 242	3.65e+11 26.8%	4.86e+09 34.1%	9.50e+07 23.2%	1.82e+11 36.2%	
▼loop at sgn210 3d	3.650+11 26.8%	4.86e+09 34.1%	9.50e+07 23.2%	1.820+11 36.28	per cycle
loop at sgn210	3.55e+11 26.0%	4.77e+09 33.4%	9.50e+07 23.2%	1.81e+11 36.0%	
sgn210_3d.c	6.690+10 4.98	7.69e+08 5.4%	1.28e+07 3.1%	4.13e+10 8.2%	
sgn210_3d.c:	5.36e+10 3.9%	9.42e+08 6.6%	3.20e+06 0.8%	2.55e+10 5.1%	

IWAVE Stencil - Why Low Performance?

 Look at LLC misses to see demand fetch from memory

 Survey resource stalls from any source

▼ B> iwave_run

Besgn_ts3d_210 Besgn_ts3d_210p012

Vioop at sgn210_3d.c: 242

loop at sgn210 3d.c: 257

gn210_30.C. 20

000		hpcviewer:	asg.x	
sgn210)_3d.e 83			
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254	<pre>ratio_x[ix] = (1.0 - etaxdt) / recip_x[ix] = 1.0 / (1.0 + eta } for (iz = tid; iz < nz; iz += { etazdt = (*_epz) * dt2; ratio_z = (1.0 - etazdt) / (1. recip_z = 1.0 / (1.0 + etazdt) for (iy = 0; iy < ny; ++iy) { etaydt = (*_epy++) * dt2; ratio_y = (1.0 - etaydt) / recip_y = 1.0 / (1.0 + eta</pre>	<pre>xdt); tsz) 8 + etazdt); ; (1.0 + etaydt);</pre>	 LLC misses of magnitue than cycles Resource so par with tot 	de lower s stalls on
	ragma ivdep			jene e
257 258 259 268 761	<pre>for (_pxend = _px + nx; _ { vx8 = _vx9[-1]; vx7 = _vx9 vx5 = _vx9[-4]; vx4 = _vx9 vv7 = _vv9[-7]; vv1 = _vv9</pre>	[-2]; vx6 = _vx9[-3]; [-5]; vx3 = _vx9[-6];		
Calling	Context View 22 3, Callers View 1, 1	lat View		
44	6 fx 171 27 At A-			
cope		PAPI_TOT_CYC.Sum (I) +	MEM_LOAD_RETIRED-LLC_MISS.Sum (I)	RESOURCE_STALLS:ANY:Sum (0
Exper	iment Aggregate Metrics	1.38e+12 100 %	1.04e+09 100 %	7.64e+11 100 %
▼main		1.38e+12 100.0	1.04e+09 100.0	7.64e+11 100.0
	p at asg.c: 133	1.38e+12 100.0	1.040+09 100.0	7.64e+11 100.0
▼ loo	p at asy.c. 155			
	loop at asg.c: 239	1.38e+12 100.0	1.04e+09 100.0	7.64e+11 100.0

1.38e+12 100.0

8.83e+11 63.8%

3.66e+11 26.5%

3,650+11 26,4%

3,660+11 26.48

3.55e+11 25.7%

0.000110 4.05

1.040+09 99.8%

6.740+08 64.8%

2.09e+08 20.1%

2.090+08 20.1%

2.09+08 20.18

2.08e+08 20.0%

1.040101 1.05

7.64e+11 100.0

4.82e+11 63.1%

2.32e+11 30.4%

2.32e+11 30.4%

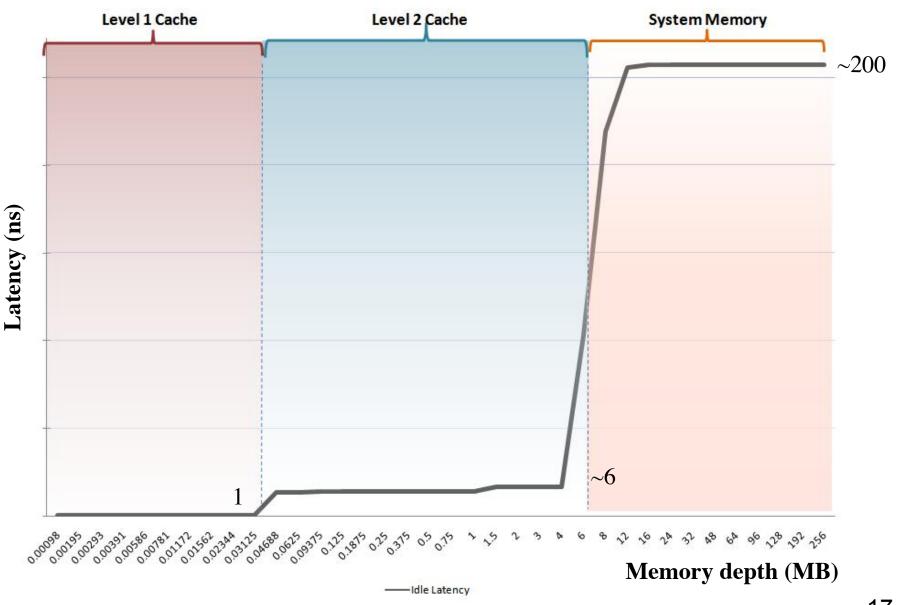
2,32e+11 30,38

2.29e+11 30.0%

4.030710 0.1

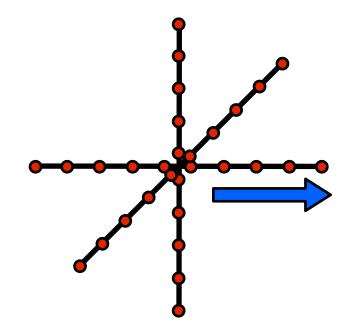
IWAVE - Looking at Resource Stall Causes

67 ((*_vy6++) - (*_vy3++)) * C2y + ((*_vy5++) - (*_vy4++)) * C1y + 68 ((*_vz9++) - (*_vz0++)) * C5z + ((*_vz8++) - (*_vz1++)) * C4z + ((*_vz7++) - (*_vz2++)) * C3z + 69 ((*_vz6++) - (*_vz3++)) * C2z + ((*_vz5++) - (*_vz4++)) * C1z) * (*_mpx++); 70 71 (*_px) = (*_px) * (*rotio_x++) + delta * (*recip_x++);	50 {	etaydt = (*_epy++) * dt2;	
<pre>266 ((*_vy9++) - (*_vy0++)) * (5y + ((*_vy0++) - (*_vy1++)) * (4y + ((*_vy7++) - (*_vy2++)) * (3y + 267 ((*_vy6++) - (*_vy3++)) * (2y + ((*_vy5++) - (*_vy4++)) * (1y + 268 ((*_vz9++) - (*_vz0++)) * (5z + ((*_vz0++) - (*_vz1++)) * (4z + ((*_vz7++) - (*_vz2++)) * (3z + 269 ((*_vz6++) - (*_vz3++)) * (2z + ((*_vz5++) - (*_vz4++)) * (1z) * (*_mpx++); 270 271 (*_px) = (*_px) * (*ratio_x++) + delta * (*recip_x++);</pre>	53 54 55 56 #pragma 57 58 59 59 60 61 62 63 63 64	<pre>recip_y = 1.0 / (1.0 + etaydt); ivdep for (_pxend = _px + nx; _px < _pxend;) { vx8 = _vx9[-1]; vx7 = _vx9[-2]; vx6 = _vx9[-3]; vx5 = _vx9[-4]; vx4 = _vx9[-5]; vx3 = _vx9[-6]; vx2 = _vx9[-7]; vx1 = _vx9[-8]; vx8 = _vx9[-9]; vx9 = *_vx9++;</pre>	 LOADS CPU reservation station full can't issue instructions until operands available
	66 67 68 69 70 71	<pre>((*_vy9++) - (*_vy0++)) * (5y + ((*_vy8++) - (*_vy1++)) * (4y + ((*_vy7++) ((*_vy6++) - (*_vy3++)) * (2y + ((*_vy5++) - (*_vy4++)) * (1y + ((*_vz9++) - (*_vz0++)) * (5z + ((*_vz8++) - (*_vz1++)) * (4z + ((*_vz7++) ((*_vz6++) - (*_vz3++)) * (2z + ((*_vz5++) - (*_vz4++)) * (1z) * (*_mpx++)) (*_px) = (*_px) * (*ratio_x++) + delta * (*recip_x++);</pre>	- (*_vy2++)) * (3y + - (*_vz2++)) * (3z +


Scope	RESOURCE_STALLS:LOAD:Sum (I) *	RESOURCE_STALLS:STORE:Sum (I)	RESOURCE_STALLS:RS_FULL:Sum (I)	RESOURCE_STALLS:ROB_FULL:Sum (I)
Experiment Aggregate Metrics	1.76e+11 100 %	6.46e+10 100 %	3.81e+11 100 %	1.560+11 100 %
▼main	1.76e+11 100.0	6.45e+10 100.0	3.81e+11 100.0	1.56e+11 100.0
▼loop at asg.c: 133	1.76e+11 100.0	6.45e+10 100.0	3.81e+11 100.0	1.56e+11 100.0
Vloop at asg.c: 239	1.76e+11 100.0	6.45e+10 100.0	3.81e+11 100.0	1.56e+11 100.0
♥loop at asg.c: 239	1.76e+11 100.0	6.45e+10 100.0	3.81e+11 100.0	1.56e+11 100.0
▼ B0 iwave_run	1.76e+11 100.0	6.45e+10 99.9%	3.81e+11 100.0	1.56e+11 99.98
▼ 80 sgn_ts3d_210	1.75e+11 99.4%	3.16e+09 4.98	2.17e+11 56.8%	1.14e+11 73.38
# Bb sgn_ts3d_210p012	1.35e+11 76.7%	3.12e+09 4.8%	1.07e+11 28.0%	9.50e+07 0.1%
Vloop at sgn210_3d.c: 242	1.35e+11 76.7%	3.12e+09 4.8%	1.07e+11 28.0%	9.50e+07 0.1%
Vipon at son210, 3d c: 249	1.350+11 76.78	3.110+09 4.83	1.07e+11 28.08	9,50e+07 0,18
loop at sgn210_3d	1.35e+11 76.6%	1.79e+09 2.8%	1.05e+11 27.6%	9.00e+07 0.1%
sgn210_3d.c: 268	3.690+10 21.0%		1.450+10 3.8%	4.000+07 0.0%

IWAVE - Looking at Memory System Usage

ig.c	🕾 sgn210_3d.c 🚦 🕾 iwave.c	
9	for (iy = 0; iy < ny; ++iy) [
51 52 53 54	<pre>etaydt = (*_epy++) * dt2; ratio_y = (1.0 - etaydt) / (1.0 + etaydt); recip_y = 1.0 / (1.0 + etaydt);</pre>	Analyze where the loads go • L2 Hit - 1.51 x 10 ¹⁰
55	agma ivdep	
57 58	<pre>for (_pxend = _px + nx; _px < _pxend;) {</pre>	• L3 Hit - 1.08 x 10 ⁹
59 58 51 52	<pre>vx8 = _vx9[-1]; vx7 = _vx9[-2]; vx6 = _vx9[-3]; vx5 = _vx9[-4]; vx4 = _vx9[-5]; vx3 = _vx9[-6]; vx2 = _vx9[-7]; vx1 = _vx9[-8]; vx8 = _vx9[-9];</pre>	 Memory - 2.07 x 10⁸
53 54	vx9 = •_vx9++;	
15 16 17 18 19 10	$ \begin{array}{l} \mbox{delta} = ((vx9 - vx0) & (5x + (vx8 - vx1) & (4x + (vx7 - vx2) & ((*_vy9+*) - (*_vy0+*)) & (5y + ((*_vy6+*) - (*_vy1+*)) & ((*_vy6+*) - (*_vy1+*)) & ((*_vy6+*) - (*_vv3+*)) & (2y + ((*_vv5+*) - (*_vv4+*)) & ((*_vv29+*) - (*_vv20+*)) & (5z + ((*_vv20+*) - (*_vv21+*)) & ((*_vv20+*) - (*_vv20+*)) & (2z + ((*_vv20+*) - (*_vv20+*)) & (2z + ((*_vv20+*) - (*_vv20+*)) & (*_vv20+*) & (*_v$	$(4y + ((*_vy7++) - (*_vy2++)) * (3y + (1y + ((*_vy2++)) + (3z + ((*_vy2++)) - (*_vy2++)) * (3z + ((*_vy2++)) + ((*_vy2++)) + (3z + ((*_vy2++)) + ((*_vy2++)) + (3z + ((*_vy2++)) + ((*_vy2++))$
71 72 73	(*_px) = (*_px) * (*ratio_x++) + delta * (*recip_x++); _px++;	
N4 15	(*_py) = (*_py) * ratio_y + delta * recip_y; _py**;	
78	(*_pz) = (*_pz) * ratio_z + delta * recip_z; _pz++; }	
- 0		


Scope	PAPI_TOT_CYC.Sum (I)	MEM_LOAD_RETIRED LLC_MISS Sum (I)	MEM_LOAD_RETIRED:L2_HIT:Sum (I)	MEM_LOAD_RETIRED:LLC_UNSHARED_HIT:Sum (0
▼loop at asg.c: 239	1.85e+12 100.4	1.04e=09 100.0	4.64e+10 100 %	3.05e+09 100.0
Vloop at asg.c: 239	1.85e+12 100.0	1.04e+09 100.0	4.64e+10 100 %	3.05e+09 100.0
V Bolwave_run	1.85e+12 99.99	1.03e+09 99.8%	4.64e+10 100 %	3.05e+09 100.0
▼ 80 sgn_ts3d_210	8.86e+11 47.91	6.66e+08 64.3%	1.92e+10 41.4%	2.82e+09 92.5%
* Bb sgn_ts3d_210p012	3.69e+11 19.90	2.080+08 20.1%	1.51e+10 32.4%	1.08e+09 35.4%
¥loop at son210 3d c: 242	3.69e+11 19.90	2.07e+08 20.0%	1.51e+10 32.4%	1.08e+09 35.49
loop at sgn210_3d.c: 249	3.69e+11 19.9	2.07e+08 20.0%	1.51e+10 32.4%	1.08e+09 35.4%
SQUELO_SULC. 244	0.000+07 0.0	•		
sgn210_3d.c: 247	3.40e+07 0.00			
sgn210_3d.c: 246	4.00e+06 0.00	4.000+04 0.0%		
► B>free	4.60e+07 0.01	1.20e+05 0.0%		
loop at sgn210_3d.c: 152	2.00e+07 0.04	8.00e+04 0.0%		
▶ 80 malloc	1.80e+07 0.00	4.00e+04 0.0%		

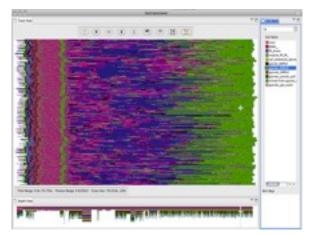
Memory Latency on Intel 5100 MCH


Principal Stencil Pattern

- Execution under study
 - - 10 points along each coordinate axis
 - sweep through memory along the X coordinate dimension

IWAVE Tuning Recommendations

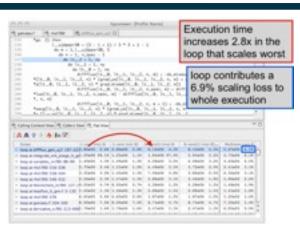
- Computation vs. communication
 - communication for the example studied is ~27% of iwave_run
 - compute on more data per core for higher parallel efficiency
 - no communication/computation overlap
- I/O
 - IWAVE uses serial Posix I/O for its input
 - using HDF5 and parallel I/O would be a higher performance choice
- Stencil calculations
 - IWAVE's stencil calculations are latency bound
 - spend most of their time waiting for data from L2 cache
 - need to make better use of the memory hierarchy

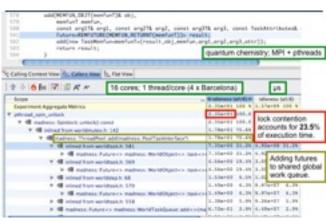

- unrolling once in Y and Z coordinate dimensions will reuse data values immediately
 - currently, temporal reuse along Y and Z axis is long distance
 - unrolling in Y and Z: immediately reuse 9 of every 10 values loaded
- pointer-based data access inhibits compiler-based tiling

tiling along Y and Z will be important for good cache reuse with large data

HPCToolkit Capabilities at a Glance

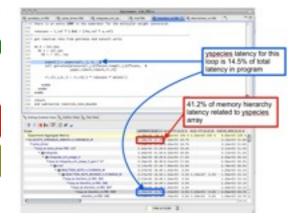
 * Software to the set * of the articly handle * v' 	gamaffange har 2 (M al.)mah gamafian far DelitySegama prin a in the printed to DelitySegam	
Contrast an and the	Of cost limity/specular fulD + b - merubadis() ()	costs for inlined procedures loops function calls in full contex
2.0.0 002		
Some .		INVESTIGATION OF ANY JOILTON
V man		AAMON DE N. LOWIE DE N
* Brecker, st. lade o		4.0em 9.7t 1.0em 9.4t
T stort ton etpert its		6.0e0 %.9 1,8e0 8.0
* top a thor, the		LANSI D.D. LTER D.D.
* Break pro		LINES IN DURING LINE
	and the divergent large and " . H. I	1.20-10 F. D. S. March 19.10 1.20-10 F. D. S. March 19.10
	WORLD HILPS	1.5ardi (1.7a (1.5ard) 4.5a
	ine hor stands of 2	
	International Clar	2.78e/0 21.00 5.79e/0 5.78
		n han 22 - Thomas B. A. H. Sharetti - 1.44
	forbearchinge top (


Attribute Costs to Code


Analyze Behavior over Time

Thursday, March 29, 2012

Pinpoint & Quantify Scaling Bottlenecks



Shift Blame from Symptoms to Causes

W Britman 5.178+10 1.80e+14 10.74 0.37a+10 1.80a+14 00.09 · loose or simplement Phil 1884 2.33e+10 1.35e+14 12.04 * B treateger module on * Issue at timestigaper F90, 12730 D. Historich J. Sciences, Fig. 108 * long at the stager FBD 125 S. Sharing L. Sharing Th. Ba D. Sharin 3. Starls 70.48 Br strengther 2.33e+10 1.35e+14 70.48 The Conditional 2.334-14 1.176-114 an W. Annen in Sec COPERSIDE PROPERTY (Americality, America (Second Control of Second Control of Sec the states TOT CHE (1) 100.00.00.00.0 490,000,000,000 city, party, mad - and 40,00,00,00,00 4.000 1.000 INES ASPENING TOT CYC (D) And other later, says are, est. est. est.

Di statua

Assess Imbalance and Variability

Associate Costs with Data

hpctoolkit.org

HPCToolkit Status

- Operational today on
 - 64- and 32-bit x86 systems running Linux (including Cray XT/E/K)
 - IBM Blue Gene/P
 - IBM Power7 systems running Linux
- Emerging capabilities
 - IBM Blue Gene/Q
 - NVIDIA GPU
 - measurement and reporting using GPU hardware counters
 - data centric analysis
- Available as open source software at http://hpctoolkit.org

Ongoing Work

- Homogeneous nodes
 - measurement and analysis for massive numbers of threads
 - "blame shifting" to pinpoint and quantify causes of idleness in OpenMP programs
- Heterogeneous nodes
 - "blame shifting" to pinpoint and quantify causes of CPU and GPU idleness in hybrid programs
 - derived metrics for GPU
- Bandwidth monitoring of communication and I/O
- Future enhancements
 - support for Intel MIC
 - provide higher-level prescriptive feedback

References

- HPCToolkit Project: http://hpctoolkit.org
- David Levinthal. Performance Analysis Guide for Intel® CoreTM i7 Processor and Intel® XeonTM 5500 processors, Version 1.0, http://software.intel.com/sites/products/collateral/ hpc/vtune/performance_analysis_guide.pdf