Linearized Multi-Parameter Inversion

Rami Nammour

Total E&P USA

TRIP 2012 Meeting March 30, 2012

Outline

- · Linearization of the inverse problem
- Normal equations
- Cramer's rule
- Variable density acoustics (2 parameters)
 - 1D layered example
 - Marmousi with homogeneous background
- Comparison with existing approaches
- Summary and future work

The Acoustic Wave Equation

$$\frac{1}{\rho(x)c^2(x)}\frac{\partial^2 p(x,t)}{\partial t^2} - \nabla \cdot \frac{1}{\rho(x)}\nabla p(x,t) = f(x,t),$$

with appropriate IC and BC.

c(x): velocity, $\rho(x)$: density, p(x): pressure, and f(x, t): source.

The wave equation:

- · Predicts the pressure at the surface for all time
- Defines a nonlinear map,

$$S: [\rho, c] \to p|_{surface},$$

• Inverse problem: recover ρ , c, given $p|_{surface}$

Abstraction

Let:

- *m*(*x*): model (consists of p-parameters: impedance, velocity, density,...)
- p(x, t): state (the solution of the system: pressure,...)

Then, if *S* is the Forward Map:

• The Forward Problem:

$$S[m] = p|_{surface}$$

• The Inverse Problem:

$$S[m] \approx S^{obs}$$

Given S^{obs} , get m(x)

Nonlinear and Large Scale !

Linearization

Solution depends nonlinearly on coefficients; if we have an approximation m_0 to the model, Linearization is advantageous:

- Write m = m₀ + δm m₀: Given reference model δm: First order perturbation about m₀
- Define Linearized Forward Map $F[m_0]$ (Born Modeling):

$$F[m_0]\delta m = \delta p$$

• Linear inverse problem:

$$F[m_0]\delta m \approx S^{obs} - S[m_0] := d$$

Normal Equations

Interpret as least squares problem: need to solve normal equations

$$N[m_0]\delta m := F^*[m_0]F[m_0]\delta m = F^*[m_0]d$$

 $N := F^*[m_0]F[m_0]$: Normal Operator (Modeling + Migration), $b := F^*d$: migrated image

- Can only apply *N*, modeling + migration
- Large Scale: millions of equations/unknowns, also $\delta m \rightarrow N \, \delta m$ expensive
- Cannot use Gaussian elimination ⇒ need rapidly convergent iteration ⇒ good preconditioner
- Will tell you how to make N undo itself!

Multi-Parameter Inversion, Toy Problem Example 1: Layered model, homogeneous background

Figure: *vp*, velocity perturbation

Figure: dn, density perturbation

Migrated Images

 $m_{\rm mig_1}$, velocity component of the migrated image.

TOTAL

 $m_{\rm mig_2}$, density component of the migrated image.

Figure: Migrated images mixing the contributions from density and velocity.

Lessons Learned

- Discontinuities mixed in migrated images (NOT Interpretable!)
- Amplitudes distorted
- Need to:
 - Separate contributions (notoriously hard)
 - Resolve resolution problem
 - Resolve ill conditioning problem (density for v.d.a.)
 - Correct amplitudes after separation

The Trick: Cramer's Rule

Want to solve

$$Nm = b.$$

In this case:

$$N = \left(\begin{array}{cc} N_{11} & N_{12} \\ N_{12} & N_{22} \end{array}\right).$$

Adjugate (= determinant \times inverse) given by:

$$Adj(N) = \left(egin{array}{cc} N_{22} & -N_{12} \ -N_{12} & N_{11} \end{array}
ight).$$

Simple matrix multiplication:

$$Adj(N) N = \begin{pmatrix} N_{22}N_{11} - N_{12}^2 & N_{22}N_{12} - N_{12}N_{22} \\ -N_{12}N_{11} + N_{11}N_{12} & N_{11}N_{22} - N_{12}^2 \end{pmatrix}$$

• Would be great if we had:

$$Adj(N) N = det(N) I$$

- Diagonal \rightarrow no mixing
- Caution: operators not numbers!
- But we can say (in some cases)

 $Adj(N) N \approx det(N) I$

• Who says so?

- Normal operator is a matrix of pseudodifferential operators:
 - Smooth background model *m*₀ (Beylkin 1985)
 - Scalar wave fields
 - Polarized vector fields (P-P, P-S, S-S). (Beylkin and Burridge, 1989; De Hoop, 2003)
- Pseudodifferential \rightarrow entries of *N* approximately commute!

Not The End Of The Story

- We never have the entries of N
- We can only apply them to data

Another Revelation

$$Adj(N) b = J^T N J b.$$
⁽¹⁾

Where,

$$J = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

Simply

$$N\left(\begin{array}{c}-b_2\\b_1\end{array}\right) = det(N)\left(\begin{array}{c}m_2\\-m_1\end{array}\right)$$

Lesson: apply N to specific permutations of the right hand side $b \rightarrow N$ undoes itself!

Application of Adjugate

 $(J^T N J m_{\text{mig}})_1 \approx \det(N) m_1$ $(J^T N J m_{\text{mig}})_2 \approx \det(N) m_2$

Figure: The application of the adjugate separates the velocity and density contributions.

Dividing by the determinant

• To undo *det*(*N*), apply *N* to form:

$$N \det(N) \,\delta m \approx \det(N) \,N \,\delta m = \det(N) \,b$$
 (2)

• given *b* and *det*(*N*) *b*, approximate scaling factor *c*:

$$c = \underset{c \in \Psi DO}{\operatorname{argmin}} \|b - c \det(N) b\|^2$$
(3)

Approximate solution:

$$\delta m = N^{-1}b \approx N^{-1}c \det(N) b \approx c \det(N) N^{-1}b$$

$$\approx c \det(N) \delta m := \delta m_{inv}$$
(4)

Figure: Scaling of the migrated images by $\det(N)$, used to undo the determinant

Approximate Inverse after Amplitude Correction

Figure: The approximate inverse. The contributions from velocity and density are separated and the amplitudes are corrected.

Data Fit 70%

Figure: Data misfit, versus target data. The inverted model fits 70% of the data.

Marmousi with homogeneous background

Density perturbation.

Velocity perturbation.

Figure: Perturbations to the homogeneous background.

Migrated images

Migrated image, density component.

Migrated image, velocity component.

Figure: *b*, the migrated images.

Application of the adjugate

Adjugate application, density component.

Adjugate application, velocity component.

Figure: Adj(N) b, application of adjugate.

Amplitude correction

Approximate inverse, density component.

Approximate inverse, velocity component.

Figure: Approximate inverse.

Data Fit 45%

Figure: Data misfit, versus target data. The inverted model fits 45% of the data.

Existing Approaches

- For one parmeter:
 - One application of N to approximate inverse
 - Known as *scaling methods*
 - Approximation of inverse: scaling factor
- For multiparameters:
 - Amplitude Versus Offset (AVO) variations \rightarrow information about physical parameters
 - Geometric optics calculations \rightarrow asymptotic formulas to approximate N^{-1}
 - Minimize objective function:

$$\|F\,\delta m-d\|^2$$

using Krylov subspace methods

Proposed method:

- Not iterative
- Uses wave equation migration (Reverse Time Migration)
- No geometric optics computations
- Relies only on application of normal operator
- Novel for multiparameters: Few applications of $N \rightarrow$ approximate inverse

Summary and Future Work

- Derived preconditioner for linearized multiparameter inverse problem
- Showed 1D and 2D examples \rightarrow 3D
- Demonstrated on homogeneous background for 2D \rightarrow smooth
- Applied to v.d.a. \rightarrow linear elasticity (3 parameters) . . .

THANK YOU !

- Dr. Symes
- TRIP
- Total E&P USA

