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Motivation

Scalar acoustic wave equation

1

κ

∂2u

∂t2
−∇ · 1

ρ
∇u = f

with appropriate boundary, initial conditions

Typical setting in seismic applications:

I heterogeneous κ, ρ with low contrast O(1)

I model data κ, ρ defined on regular Cartesian grids

I large scale ⇒ waves propagate O(102) wavelengths; solutions
for many different f

I f smooth in time
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Motivation
For piecewise constant κ, ρ with interfaces

I FDM: first order interface error, time shift, incorrect arrival
time, no obvious way to fix (Brown 84, Symes & Vdovina 09)

I Accuracy of standard FEM (eg specFEM3D) relies on
adaptive, interface fitting meshes

I Exception: FDM derived from mass-lumped FEM on regular
grid for constant density acoustics has 2nd order
convergence even with interfaces (Symes & Terentyev 2009)

I Aim of this project: modify FD/FEM with full accuracy for
variable density acoustics
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Figure: Velocity model
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Motivation
For highly oscillating coefficient (rough medium)

e.g., coefficient varies on scale 1 m ⇒ accurate regular FD
simulations of 30 Hz waves may require 1 m grid though the
corresponding wavelength is about 100 m at velocity of 3 km/s

Can we create an accurate FEM on coarse ( wavelength) grid?
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A log of compressional wave velocity from a well in West Texas,
supplied to TRIP by Total E&P USA and used by permission.
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Motivation

Ideal numerical method:

I high order

I no special meshing, i.e., on regular grids

I works for problems with heterogeneous media

Owhadi and Zhang 2007: 2D harmonic coordinate finite element
method, sub-optimal convergence on regular grids

Binford 11: showed using the true support recovers the optimal
order of convergence on triangular meshes for 2D static interface
problems, and mesh of diameter h2 is used to approximate the
harmonic coordinates

Result of project: modification of Owhadi and Zhang’s method
with full 2nd order convergence for variable density acoustic WE
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Harmonic Coordinates
Global C -harmonic coordinates F in 2D, its components
F1(x1, x2),F2(x1, x2) are weak sols of

∇ · C (x)∇Fi = 0 in Ω

Fi = xi on ∂Ω

F : Ω→ Ω C -harmonic coordinates

e.g.,

x2

x1C1 = 20

C2 = 1

r0 =
1
√

2π

(1, 1)

(−1,−1)
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Harmonic Coordinates

I physical regular grid (x1, x2) = (jhx , khy ) (left),

I harmonic grid (F1,F2) =
(
F1(jhx , khy ),F2(jhx , khy )

)
(right)
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Harmonic Coordinate FEM

Workflow of HCFEM:

1 prepare a regular mesh on physical domain, T H ;

2 approximate F on a fine mesh T h by Fh

3 construct the harmonic triangulation T̃ H = Fh(T H);

4 construct the HCFE space
SH = span{φ̃Hi ◦ Fh : i = 0, · · · ,Nh}, where
S̃H = span{φ̃Hi : i = 0, · · · ,Nh} is Q1 FEM space on

harmonic grid T̃H ;

5 solve the original problem by Galerkin method on SH .

⇒ solve n (≤ 3) harmonic problems to obtain harmonic
coordinates F; resulting stiffness and mass matrices of HCFEM
have the same sparsity pattern as in standard FEM
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Harmonic Coordinate FEM

Galerkin approximation uh ∈ Sh (harmonic coordinate FE space)
to u (weak solution of −∇ · C∇u = f ) has optimal error:∫ ∫

Ω
|∇u −∇uh|2 dx = O(h2)

Why this is so: see WWS talk in 2008 TRIP review meeting
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Harmonic Coordinate FEM

For wave equation:

1

κ

∂2u

∂t2
−∇ · 1

ρ
∇u = f in Ω ⊂ R2

Dirichlet BC, u ≡ 0, t < 0, f ∈ L2([0,T ], L2(Ω))

Assume f is finite bandwidth ⇒ Galerkin approximation uh in
HCFE space Sh on mesh of diam h has optimal order
approximation in energy

e[u − uh](t) = O(h2), 0 ≤ t ≤ T

with e[u](t) :=
1

2

(∫∫
Ω dx | 1√

κ

∂u

∂t
|2 + | 1

√
ρ
∇u|2

)
(t)
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1D Illustration
1D elliptic interface problem

(βux)x = f 0 ≤ x ≤ 1, u(0) = u(1) = 0

f ∈ L2(0, 1), β has discontinuity at x = α

β(x) =

{
β− x < α
β+ x > α

displacement u is continuous as well as normal stress βux at α

1D ’linear’ HCFE basis:
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FEM Discretization for Acoustic Waves
For acoustic wave equation:

1

κ

∂2u

∂t2
−∇ · 1

ρ
∇u = f

FE space S = span{ψj(x)}Nh
j=0, FE solution uh =

Nh∑
j=0

uj(t)ψj(x).

FEM semi-discretization:

Mh d2Uh

dt2
+ NhUh = F h

Uh(t) = [u0, ...uNh
]T , F h

i =

∫
Ω
f ψi dx , Mh

ij =

∫
Ω

1

κ
ψiψj dx ,

Nh
ij =

∫
Ω

1

ρ
∇ψi · ∇ψj dx
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Mass Lumping

2nd order time discretization:

MhU
h(t + ∆t)− 2Uh(t) + Uh(t −∆t)

∆t2
+ NhUh(t) = F h(t)

⇒ every time update involves solving a linear system MhUh =RHS

Replace Mh by a diagonal matrix M̃h,

M̃h
ii =

∑
j

Mh
ij

Can achieve optimal rate of convergence if the solution u is
smooth (e.g., H2(Ω))

My thesis has the details for validation of mass lumping
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Implementation and Computation

Implementation: based on deal.II, a C++ program library targeted
at the computational solution of partial differential equations using
adaptive finite elements

I built-in quadrilateral mesh generation and mesh adaptivity

I various finite element spaces, DG

I interfaces for parallel linear system solvers (eg PETSc)

I data output format for quick view (eg paraview, opendx,
gnuplot, ps)

Computation: using DAVinCI@RICE cluster, 2304 processor cores
in 192 Westmere nodes (12 processor cores per node) at 2.83 GHz
with 48 GB of RAM per node (4 GB per core).
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Elliptic BVP - Square Circle Model

−∇ · C(x)∇u = −9r in Ω

where r =
√

x2 + y 2

For piecewise const C(x) shown in the figure below, analytical solution:

u =
1

C(x)
(r 3 − r 3

0 )

x2

x1C1

C2

r0 =
1
√

2π

(1, 1)

(−1,−1)
19



High Contrast: C1 = 20,C2 = 1

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

grid size H

s
e

m
i−

H
1
 e

rr
o

r

 

 

HCFEM

O(H)

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

grid size H

L
2
 e

rr
o

r

 

 

HCFEM

O(H
2
)

I HCFEM is applied on the physical grid of diameter H

I Harmonic coordinates are approximated on the locally refined grid, in which the
grid size is O(h) (h = H2) near interfaces.
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I Standard FEM is applied on the physical grid of diameter H
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HCFEM

O(H2)

I HCFEM is applied on the physical grid of diameter H

I Harmonic coordinates are approximated on the locally refined grid, in which the
grid size is O(h) (h = H2) near interfaces.
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2D Acoustic Wave Tests

Acoustic wave equation:

κ−1∂
2u

∂t2
−∇

(
1

ρ
∇u
)

= 0

u(x , 0) = g(x , 0), ut(x , 0) = gt(x , 0)

with g(x , t) =
1

r
f

(
t − r

cs

)
and

f (t) =
(

1− 2 (πf0 (t + t0))2
)
e−(πf0(t+t0))2

, f0 central frequency,

cs =

√
κ(xs)

ρ(xs)
, t0 =

1.45

f0

The following examples similar to those in Symes and Terentyev,
SEG Expanded Abstracts 2009
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Dip Model

Central frequency f0 = 10 Hz, xs = [−300
√

3 m,−300 m]

x2

x1

[ρ1, c1] = [3000 kg/m3, 1.5 m/s]

[ρ2, c2] = [1500 kg/m3, 3 m/s]

(2 km,2 km)

(-2 km,-2 km)

xs
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Dip Model
Q1 FEM solution, regular grid quadrature (= FDM) - this is
equivalent to using ONLY the node values on the regular grid to
define mass, stiffness matrices

Figure: T = 0.75 s

Entire domain

h e p

7.8 m 3.62e-1 -

3.9 m 9.30e-2 1.96

1.9 m 2.31e-2 2.01
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Dip Model
Q1 FEM solution, accurate quadrature for mass and stiffness
matrices’ computation,

Q1 FEM with accurate quadrature is also (2,2) FDM but with
different coefficients - this is Igor’s result (constant density
acoustics).

Figure: T = 0.75 s

Entire domain

h e p

7.8 m 3.56e-1 -

3.9 m 9.13e-2 1.96

1.9 m 2.27e-2 2.01
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Dip Model

HCFEM solution

Figure: T = 0.75 s

Entire domain

h e p

7.8 m 3.63-1 -

3.9 m 9.36e-2 1.96

1.9 m 2.34e-2 2.01
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Dome Model
central frequency f0 = 15 Hz, xs = [3920 m, 3010 m]
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Figure: Velocity model
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Dome Model
Difference between HCFEM solution on regular grid (h = 7.8125
m) and FEM solution on locally refined grid, same time stepping

Figure: T = 1.3 s
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Dome Model
Difference between FEM solution on regular grid (h = 7.8125 m)
and FEM solution on locally refined grid, same time stepping

Figure: T = 1.3 s
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Conclusion

2D harmonic coordinate finite element method (HCFEM) on
regular grids achieves second order convergence rate for static and
dynamic acoustic interface problems.

For dip model: HCFEM and mass lumping is at least as good as
Q1 FEM with accurate quadrature, when density contrasts are low
(typical of seismic). Both seem to get rid of stairstep diffractions
(more or less). More refined analysis shows HCFEM somewhat
more accurate.

For dome model: HCFEM closer to refined-grid FEM when same
(very short) time steps taken

Future work:

I Fill in the theoretical gaps,

I Extensions, eg higher order, DG, elasticity.
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