Full Waveform Inversion via Matched Source Extension

Guanghui Huang and William W. Symes

TRIP, Department of Computational and Applied Mathematics

May 1, 2015, TRIP Annual Meeting

G. Huang and W. W. Symes

< ∃ >

Outline

- 2 Matched Source Waveform Inversion
- 3 Analysis of Gradient and Hessian
- 4 Numerical Examples
- **5** Conclusion and Discussion

.≣ . ►

Outline

- 2 Matched Source Waveform Inversion
- 3 Analysis of Gradient and Hessian
- 4 Numerical Examples
- 5 Conclusion and Discussion

→ Ξ →

A >

Overview

Assume that the received pressure field $p(\mathbf{x}_r, t; \mathbf{x}_s)$ generated by a causal isotropic point radiator at source position $\mathbf{x} = \mathbf{x}_s$ satisfies the constant density acoustic wave equation,

$$\frac{1}{v^2} \frac{\partial^2 p}{\partial t^2} - \Delta p = \delta(\mathbf{x} - \mathbf{x}_s) f(t) \text{ in } \mathbb{R}^2.$$
(1)
$$p|_{t=0} = \frac{\partial p}{\partial t}\Big|_{t=0} = 0$$
(2)

Let's introduce the forward modeling operator S[v] to relate the velocity v(x,z) and wavelet function f(t) to the scattering field at the receiver \mathbf{x}_{r} ,

$$S[v, f](\mathbf{x}_r, t; \mathbf{x}_s) = p(\mathbf{x}_r, t; \mathbf{x}_s).$$
(3)

Full Waveform Inversion

Given recorded traces $d(\mathbf{x}_r, t; \mathbf{x}_s)$, find velocity v and wavelet function f such that S[v, f] = d.

• FWI via data fitting,

$$J_{\rm FWI}[v,f] = \frac{1}{2} \sum_{\mathbf{x}_r, \mathbf{x}_s} \int |S[v,f](\mathbf{x}_r,t;\mathbf{x}_s) - d(\mathbf{x}_r,t;\mathbf{x}_s)|^2 dt.$$
(4)

- FWI objective function is quadratic with respect to *f*, but highly nonlinear and nonconvex in velocity *v* (frequency dependent).
- Cycle skipping problem (eg. Symes, 1994).

- **→ →** - •

Outline

Overview

2 Matched Source Waveform Inversion

- 3 Analysis of Gradient and Hessian
- 4 Numerical Examples
- **5** Conclusion and Discussion

→ Ξ →

A >

Extended Modeling & Null Space

Extended Modeling:

Let $\bar{f}(\mathbf{x}_r,\mathbf{x}_s,t)$ be the extended model of f(t) , define the extended modeling operator

$$\bar{S}[v,\bar{f}] = \bar{p}(\mathbf{x}_r,t;\mathbf{x}_s)$$

where \bar{p} is the solution of (1)-(2) with source function being \bar{f} .

Null Space (Annihilator):

- Differential semblance operator $A = \partial_{z_s}$ (see Symes (1994));
- t-moment operator after source signature deconvolution $A = tf^{-1}(t)$ (eg. deconvolution-based by Luo and Sava (2011), AWI by Warner (2014)).

(日) (同) (三) (

MSWI

Matched Source Waveform Inversion (MSWI) is stated as follows,

$$J_{\rm MS}[v] = \frac{1}{2} \sum_{\mathbf{x}_r, \mathbf{x}_s} \int |A\bar{f}|^2 dt$$
(5)

s.t.
$$\bar{S}[v,\bar{f}](\mathbf{x}_r,t;\mathbf{x}_s) = d(\mathbf{x}_r,t;\mathbf{x}_s).$$
 (6)

Key feature: Even given wrong velocity, data fitting is perfect, hence no cycle skipping problem!

.∃ ▶ . ∢

э

Outline

1 Overview

2 Matched Source Waveform Inversion

3 Analysis of Gradient and Hessian

- Analysis of Gradient
- Local Convexity of Hessian
- Relation with DSO formulation
- 4 Numerical Examples
- 5 Conclusion and Discussion

-

3 Analysis of Gradient and Hessian Analysis of Gradient

- Local Convexity of Hessian
- Relation with DSO formulation

∃ >

Factorization of Tangent Operator

Under single arrival approximation, we have

 $\bar{S}[v,\bar{f}](\mathbf{x}_r,t;\mathbf{x}_s) \approx a(\mathbf{x}_r,\mathbf{x}_s)\bar{f}(\mathbf{x}_r,\mathbf{x}_s,t-\tau(\mathbf{x}_r,\mathbf{x}_s))$

Then taking the first order variation of $\bar{S}[v,\bar{f}]$ formally gives us the desired factorization of operator

$$(D\bar{S}[v]\delta v)\bar{f}(\mathbf{x}_r, t; \mathbf{x}_s) \approx a(\mathbf{x}_r, \mathbf{x}_s) \frac{\partial}{\partial t} \bar{f}(\mathbf{x}_r, \mathbf{x}_s, t - \tau(\mathbf{x}_r, \mathbf{x}_s))(-D\tau[v]\delta v) \triangleq \bar{S}[v, Q[v, \delta v]\bar{f}].$$

where $D\tau[v]$ is the tangent operator of traveltime function, and $Q[v,\delta v]\bar{f}$ is bilinear operator with respect to δv and f with

$$Q[v,\delta v] = -(D\tau[v]\delta v)\frac{\partial}{\partial t}.$$

э

- 4 回 入 4 注 入 4 注 入

Backprojection of Traveltime Differences

Taking the first order perturbation of $J_{\rm MS}$, we have

$$DJ_{\rm MS}[v]\delta v \approx \sum_{\mathbf{x}_{\tau},\mathbf{x}_s} \int A^T A \bar{f}(D\tau[v]\delta v \bar{f}_t) dt$$

Hence the gradient is given by,

$$g \approx \sum_{\mathbf{x}_r, \mathbf{x}_s} D\tau[v]^T \Big(\int (A^T A \bar{f}) \bar{f}_t dt \Big)$$

Here $D\tau[v]^T$ is the adjoint operator of $D\tau[v]$, which backprojects its arguments along rays.

Adjoint Source in the Gradient

Assume that data is noise-free and well approximated by geometric optics,

$$d(\mathbf{x}_r, t; \mathbf{x}_s) \approx a^*(\mathbf{x}_r, \mathbf{x}_s) f^*(t - \tau[v^*](\mathbf{x}_r, \mathbf{x}_s)).$$
(7)

Denote by $\Delta \tau(\mathbf{x}_r,\mathbf{x}_s) = \tau[v^*](\mathbf{x}_r,\mathbf{x}_s) - \tau[v](\mathbf{x}_r,\mathbf{x}_s)$, then

• For differential semblance operator $A = \partial_{z_s}$,

$$\int (A^T A \bar{f}) \bar{f}_t dt \approx -\left(\frac{a^*}{a}\right)^2 \int \left(\frac{\partial f^*}{\partial t}\right)^2 dt \left(\frac{\partial}{\partial z_s}\right)^T \left(\frac{\partial}{\partial z_s} \Delta \tau[v](z_r, z_s)\right).$$

• For *t*-moment operator, we have

$$\int (A^T A \bar{f}) \bar{f}_t dt \approx -(a^*/a)^2 \Delta \tau[v](z_r, z_s).$$

Traveltime Tomography

Travel tomography attempts to minimize the difference between the computed traveltime and picked traveltime from data,

$$J_{\mathrm{TT}} = \frac{1}{2} \sum_{\mathbf{x}_r, \mathbf{x}_s} \|\tau[v](\mathbf{x}_r, \mathbf{x}_s) - \tau[v^*](\mathbf{x}_r, \mathbf{x}_s)\|^2,$$

The gradient of $J_{\rm TT}$ is given by,

$$\nabla J_{\mathrm{TT}} = -\sum_{\mathbf{x}_r, \mathbf{x}_s} D\tau[v]^T (\Delta \tau[v](z_r, z_s)).$$

Overview

2 Matched Source Waveform Inversion

3 Analysis of Gradient and Hessian

- Analysis of Gradient
- Local Convexity of Hessian
- Relation with DSO formulation

4 Numerical Examples

5 Conclusion and Discussion

∃ >

Local Convexity of Hessian

The Hessian of $J_{\rm MS}$ at consistent data $Aar{f}=0$ is given by

$$D^2 J[v^*](\delta v, \delta v) \approx \sum_{\mathbf{x}_r, \mathbf{x}_s} \int |[A, Q](v^*, \delta v) \bar{f}|^2 dt$$

where [A, Q] = AQ - QA. • for $A = \partial_{z_c}$,

$$D^2 J[v^*](\delta v, \delta v) \approx \int \left(\frac{\partial f^*}{\partial t}\right)^2 dt \left(\sum_{\mathbf{x}_r, \mathbf{x}_s} \left|\frac{\partial}{\partial z_s} D\tau[v^*] \delta v\right|^2\right)$$

• for
$$A = tf^{-1}(t)$$
,

$$D^2 J[v^*](\delta v, \delta v) \approx \sum_{\mathbf{x}_r, \mathbf{x}_s} |D\tau[v^*]\delta v|^2$$

Hessian of $J_{\rm MS}$ is proportional to the Hessian of a traveltime objective function, and is as convex as tomographic objective.

G. Huang and W. W. Symes

Overview

2 Matched Source Waveform Inversion

Analysis of Gradient and Hessian Analysis of Gradient Local Convexity of Hessian

Relation with DSO formulation

4 Numerical Examples

5 Conclusion and Discussion

< ∃ >

Relation with DSO formulation

DSO formulation seeks the balance between data fitting and annihilator term, i.e.

$$J_{\alpha}[v,\bar{f}] = \frac{1}{2} \sum_{\mathbf{x}_r,\mathbf{x}_s} \int |\bar{S}[v,\bar{f}] - d|^2 dt + \frac{\alpha}{2} \sum_{\mathbf{x}_r,\mathbf{x}_s} \int |A\bar{f}|^2 dt.$$

- As $\alpha \to 0$, the gradient and Hessian of $\frac{1}{\alpha}J_{\alpha}$ is the same as $J_{\rm MS}.$
- As $\alpha \to +\infty$, $A\bar{f}=0$, then it's equivalent to minimize $J_{\rm FWI}$

э

< ロ > < 回 > < 回 > <</p>

Outline

1 Overview

- 2 Matched Source Waveform Inversion
- 3 Analysis of Gradient and Hessian
- 4 Numerical Examples
- **5** Conclusion and Discussion

→ Ξ →

A >

Overview Matched Source Waveform Inversion Analysis of G

Example 1: Velocity Scan of $J_{\rm MS}$

Figure: $J_{\rm MS}[v]$ for homogeneous velocity v, 0.25 s/km $\leq v^{-1} \leq$ 0.75 s/km. Correct velocity is 2 km/s.

20 / 31

Example 2: Gaussian Lens

In this example, the target velocity consists of two Gaussian velocity anomalies embedded in a v = 2 km/s background:

$$v(x,z) = 2 - 0.6e^{-\frac{(x-0.25)^2 + (z-0.3)^2}{(0.2)^2}} - 0.6e^{-\frac{(x-0.25)^2 + (z-0.7)^2}{(0.1)^2}},$$

where $x \in [0, 0.5]$ km, $z \in [0, 1]$ km. The initial model is given by the constant velocity $v_0 = 2$ km/s. Data is consisted of 50 shots and 99 receivers for each shot, which are uniformly distributed.

Example 2: Gaussian Lens

æ

<ロ> <四> <四> <日> <日> <日</p>

Overview Matched Source Waveform Inversion Analysis of G

Example 2: Gaussian Lens

э

Overview Matched Source Waveform Inversion Analysis of G

Example 2: Gaussian Lens

Figure: Extended source functions

∢ ≣ ≯

æ

Image: Image:

Example 3: Big Gaussian

Figure: Low velocity Gaussian anomaly model with radius $250m \times 150m$ embedded in the constant background velocity $v_0 = 2000m/s$

< ∃ >

- ∢ ∩ ¬ >

Example 3: Big Gaussian

Figure: Receivers are uniformly distributed long $x_r = 1990$ m from $z_r = 10$ m to $x_r = 990$ m for each shots, shots interval is 20m. The zero-phase ricker wavelet with main frequency f = 10Hz for generating the data.

< ∃ >

Example 3: Big Gaussian

Figure: Inverted velocity after 50 iterations by MSWI (top) and FWI (bottom)

э

<ロ> <四> <四> <日> <日> <日</p>

Outline

1 Overview

- 2 Matched Source Waveform Inversion
- 3 Analysis of Gradient and Hessian
- 4 Numerical Examples
- **5** Conclusion and Discussion

→ Ξ →

A .

Conclusion and Discussion

Conclusion

- Establish the relation between waveform inversion and traveltime tomography;
- Convexity of objective function is independent of frequency content.
- MSWI still get stuck in local minima due to the strong multipaths.

Discussion

- Does perfect data fitting (no cycle skipping) mean avoiding local minima;
- How do we choose the extended model space and the related annihilator.

→ Ξ →

To be cont'd

Figure: Inverted velocity after 100 iterations and 200 iterations

G. Huang and vv. vv. Symes

30 / 31

æ

<ロ> <四> <四> <日> <日> <日</p>

Thanks

- Total E&P USA, for funding me
- The Rice Inversion Project, for supporting me
- TRIP members, for helping me
- All of you, for listening to me