JIE HOU

Education

 Rice University
 09/2012—Present

 Ph.D. Candidate in Geophysics, Earth Science
 09/2008—06/2012

 China University of Petroleum(East China)
 09/2008—06/2012

 B.S. in Exploration Geophysics
 09/2008—06/2012

 Thesis: High Order Finite-difference Modeling of Acoustic and Elastic Wave

Research Interest

- True Amplitude Seismic Imaging and Inversion
- Acceleration of Least Squares Migration
- Inversion Velocity Analysis

An Approximate Inverse to the Extended Born Modeling Operator

Jie Hou

TRIP 2014 Review Meeting

May 1st, 2015

Slides based on same title paper submitted to Geophysics

Born Approximation = Linearized Seismic Inverse Problem

Model Separation

$$m = m_0 + \delta m$$

First Order Approximation

$$\mathcal{F}[m] \approx \mathcal{F}[m_0] + \mathcal{F}[m_0]\delta m$$

Linearized Map

 $F[m_0]\delta m \to \delta d$

1

Given $m_0(\mathbf{x})$, $\delta d(\mathbf{x_r}, t; \mathbf{x_s})$, find $\delta m(\mathbf{x})$ to fit the data:

 $F[m_0]\delta m \simeq \delta d$

Imaging

- Locate the reflector
- Kinematically
- Adjoint Operator F*
- RTM

Inversion

- Recover the reflector
- Kinematically & Dynamically
- Inverse Operator F^{-1}
- True Amplitude RTM

Born Modeling and its Adjoint

Born Modeling and Migration Operator

$$\begin{split} F[\mathbf{v}]\delta\mathbf{v}(\mathbf{x}_{\mathbf{r}},t;\mathbf{x}_{\mathbf{s}}) &= \frac{\partial^2}{\partial t^2} \int d\mathbf{x} \int d\tau \frac{2\delta\mathbf{v}(\mathbf{x})}{\mathbf{v}^3(\mathbf{x})} G(\mathbf{x},\mathbf{t}-\tau;\mathbf{x}_{\mathbf{r}}) G(\mathbf{x},\tau;\mathbf{x}_{\mathbf{s}}) \\ F^*[\mathbf{v}]d(\mathbf{x}) &= \frac{2}{\mathbf{v}^3(\mathbf{x})} \int d\mathbf{x}_{\mathbf{s}} d\mathbf{x}_{\mathbf{r}} dt d\tau G(\mathbf{x},\tau;\mathbf{x}_{\mathbf{s}}) \frac{\partial^2 d(\mathbf{x}_{\mathbf{r}},t;\mathbf{x}_{\mathbf{s}})}{\partial t^2} G(\mathbf{x},t-\tau;\mathbf{x}_{\mathbf{r}}) \end{split}$$

(a) Born Modeling

(b) Born Migration

TR. I P

 $\mathcal{M}=$ physical model space $\bar{\mathcal{M}}=$ bigger extended model space

 $\bar{\textit{F}}:\bar{\mathcal{M}}\rightarrow\mathcal{D}$ extended modeling operator

Extension Property: $E[\mathcal{M}] \subset \overline{\mathcal{M}}$; $m \in \mathcal{M} \rightarrow \overline{F}m = Fm$

Subsurface offset Extension

Subsurface Extension : 2h = Difference between subsurface scattering points (subsurface offset)

Physical meaning : action at a positive distance

Extend the operator by permitting δv to also depend on (half) offset h.

Extended Born Modeling and Migration Operator

$$\bar{F}[v]\delta v(\mathbf{x_s}, \mathbf{x_r}, t) = \frac{\partial^2}{\partial t^2} \int d\mathbf{x} d\mathbf{h} d\tau G(\mathbf{x} + \mathbf{h}, t - \tau; \mathbf{x_r}) \frac{2\delta v(\mathbf{x}, \mathbf{h})}{v^3(\mathbf{x})} G(\mathbf{x} - \mathbf{h}, \tau; \mathbf{x_s})$$
$$\bar{F}^* d(\mathbf{x}, h) = \frac{2}{v^3(\mathbf{x})} \int d\mathbf{x_s} d\mathbf{x_r} dt d\tau G(\mathbf{x} - \mathbf{h}, \tau; \mathbf{x_s}) G(\mathbf{x} + \mathbf{h}, t - \tau; \mathbf{x_r}) \frac{\partial^2 d(\mathbf{x_r}, t; \mathbf{x_s})}{\partial t^2}$$

Fons ten Kroode (2012) constructed the inverse of the extended Kirchhoff Operator (in asymptotic sense) :

Fons ten Kroode,2012

$$\begin{split} \tilde{\mathcal{K}} &i = \frac{1}{2\pi} \int d\mathbf{x} d\mathbf{h} d\omega e^{-i\omega t} \mathcal{G}(\mathbf{x}_{\mathbf{r}}, \mathbf{x} + \mathbf{h}, \omega) \frac{\partial i(\mathbf{x}, \mathbf{h})}{\partial z} \mathcal{G}(\mathbf{x} - \mathbf{h}, \mathbf{x}_{\mathbf{s}}, \omega) \\ \tilde{\mathcal{I}} &d = \frac{32}{\pi v^{2}(\mathbf{x})} \int d\mathbf{x}_{\mathbf{r}} d\mathbf{x}_{\mathbf{s}} d\omega (-i\omega) \frac{\partial \mathcal{G}^{*}(\mathbf{x} + \mathbf{h}, \mathbf{x}_{\mathbf{r}}, \omega)}{\partial z_{r}} d(\mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}, \omega) \frac{\partial \mathcal{G}^{*}(\mathbf{x}_{\mathbf{s}}, \mathbf{x} - \mathbf{h}, \omega)}{\partial z_{s}} \end{split}$$

(http://iopscience.iop.org/0266-5611/28/11/115013)

Can we construct a similar operator to extended Born Modeling Operator?

Asymptotic Analysis of the Normal Operator $\bar{F}[v]^*\bar{F}[v]\delta v(\mathbf{x},h)$

Extended Born Modeling Operator and its Adjoint

$$\bar{F}[v]\delta v = \frac{\partial^2}{\partial t^2} \int d\mathbf{x} d\mathbf{h} d\tau G(\mathbf{x} + \mathbf{h}, t - \tau; \mathbf{x_r}) \frac{2\delta v(\mathbf{x}, \mathbf{h})}{v^3(\mathbf{x})} G(\mathbf{x} - \mathbf{h}, \tau; \mathbf{x_s})$$

$$\bar{c}^{*}[v]d = \frac{2}{v^{3}(\mathbf{x})} \int d\mathbf{x}_{\mathbf{s}} d\mathbf{x}_{\mathbf{r}} dt d\tau G(\mathbf{x} - \mathbf{h}, \tau; \mathbf{x}_{\mathbf{s}}) G(\mathbf{x} + \mathbf{h}, t - \tau; \mathbf{x}_{\mathbf{r}}) \frac{\partial^{2} d(\mathbf{x}_{\mathbf{r}}, t; \mathbf{x}_{\mathbf{s}})}{\partial t^{2}}$$

- Step 1 High Frequency Approximation
- Step 2 Principle of Stationary Phase
- Step 3 Modify adjoint operator by some Scaling and Filters

Where miracle happens

Relation between amplitudes and Beylkin determinant (Bleistein, N.; Zhang, Y.; Xu, S.; Zhang, G.; Gray, S. 2005)

$$\bar{F}[\mathbf{v}_0]^{\dagger} = W_{\text{model}}^{-1}[\mathbf{v}_0]\bar{F}[\mathbf{v}_0]^*W_{\text{data}}[\mathbf{v}_0].$$

•
$$W_{\text{model}}^{-1} = 4v_0^5 LP$$
, $W_{\text{data}} = I_t^4 D_{z_s} D_{z_r}$

$$\blacktriangleright L = \sqrt{-\nabla_{(x,z)}^2} \sqrt{-\nabla_{(h,z)}^2}$$

- P is integral operator with computable kernel
 (P ≈ 1 near h = 0 or if horizontal velocity variation is small)
- It is the time integral
- D_{z_s}, D_{z_r} are the source and receiver depth derivative.

- 2-8 Finite Difference
- > 2.5-5-30-35 Hz Bandpass Wavelet
- dx = dz = dz = 10m, dt = 1ms
- Dense sampled sources (every 40m)
- Fixed Spread Receivers
- Absorbing Boundary, except free surface on the top

Numerical Test I

Extended Migration Result

Extended Inversion Result

Resimulated Data

Resimulated Data

Data Residual (= 13.6% ||observed data||)

One trace Comparison

Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green). The difference is shown as the red line.

$$E[\delta v]:$$

$$\delta v(\mathbf{x}, h) = \delta v(\mathbf{x}) \delta(h)$$

$$\mathcal{X}[\bar{\delta \mathbf{v}}]:$$

$$\delta \mathbf{v}(\mathbf{x}) = \int \delta \mathbf{v}(\mathbf{x}, h) \Phi(h) dh$$

where $\Phi(0) = 1$

Non-extended Inversion Result

Looption (m)

 $\begin{array}{l} \mathsf{Model Residual} \\ (= 19.1\% \mid\mid \textit{model} \mid \mid) \end{array}$

$$\delta \mathbf{v}(\mathbf{x}) = \sum_{h} \delta \mathbf{v}(\mathbf{x}, h)$$

One trace Comparison

Figure: One trace (middle) comparison between the reflectivity model (blue) and non-extended inversion result (green). The difference is shown as the red line.

Extended Migration Result-Wrong Background

Extended Inversion Result-Wrong Background

Resimulated Data-Wrong Background

21

Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green). The difference is shown as the red line.

Stacked Image-Wrong Background

Apply $D_{z_s}D_{z_r}$ -Naive Implementation

Reflector

Apply $D_{z_s}D_{z_r}$ -Free Surface Simulation

Reflector

Numerical Test II

Extended Inversion

3000

Data Difference =10.4%||observed data||

2000

One trace Comparison

Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green). The difference is shown as the red line.

Non-extended Inversion

Non-extended Inversion Result

Model Difference =21.3% ||model||

Figure: One trace (middle) comparison between the reflectivity model (blue) and non-extended inversion result (green). The difference is shown as the red line.

Marmousi Model

Background Velocity Model

Extended Inversion Result

Original Data

Resimulated Data

Data Difference

Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green)

Nonextended Inversion Result

Reflectivity Model

Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green))

Reflectivity Model

Background Model

Background Model (Salt Removed)

SEG/EAGE Salt Model-Salt Removed

Nonextended Inversion Result

Nonextended Inversion Result

Takeaway Messages

- Subsurface offset extended RTM can be modified into an asymptotic inverse to the extended Born Modeling Operator
- Although the derivation is based on asymptotic theory, the implementation doesn't involve any ray computation
- ► The new inverse operator can approximate the ELSM result
- The new inverse operator can also produce non-extended inversion, which can approximate LSM

Fons ten Kroode, Jon Sheiman, Henning Kuehl, Peng Shen, Yujin Liu

- ► TRIP Members and Sponsors
- Shell International Exploration and Production
- Madagascar, SU, TACC, RCSG
- Thank you for listening

Nonextended Inversion Result Difference