HCL_Vector_d is the base class for all vectors in HCL
![]() | Vector operations (z is the object invoking the method).
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | Access to components.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | Array operations - ``Matlab'' methods.
|
HCL_Vector_d is the base class for all vectors in HCL. Vectors are implemented as concrete classes derived from HCL_Vector_d so that the optimization code need make no assumptions about the data structures used to implement the vectors. This is essential when nonstandard data structures (such as disk files for very large problems) are used.Note that each class derived from HCL_Vector_d must correspond to a class derived from HCL_VectorSpace_d. That is, if one wishes to create a class MyVector, derived from HCL_Vector_d, one is obligated to first define MyVectorSpace, derived from HCL_VectorSpace_d.
virtual void Neg()
virtual void Mul( const double & a )
virtual void Add( const HCL_Vector_d & x )
virtual void Mul( const double & a, const HCL_Vector_d & x )
virtual void Add( const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual void Sub( const HCL_Vector_d & x )
virtual void Sub(const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual void ScaleAdd(const double & a, const HCL_Vector_d & x )
virtual void AddScale(const double & a, const HCL_Vector_d & x )
virtual void AddScale(const double & a, const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual double Inner( const HCL_Vector_d & x ) const
virtual double Norm() const
virtual double Norm2() const
virtual HCL_VectorSpace_d& Space() const
virtual void Zero()
virtual void Random()
virtual double* Data()
virtual void Add( double a )
- overload of Add with scalar argument
a la Matlab
virtual void Add( const HCL_Vector_d & x, double a )
- overload of Add with scalar argument
a la Matlab
virtual void DiagScale( const HCL_Vector_d & x )
- matrix multiply by diag(x)
virtual void DiagScale( const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual void DiagRecipScale( const HCL_Vector_d & x, double tol=0.0)
- matrix division by diag(x).
Safeguarded against overflow - if tol is less
that the smallest safe divisor sfmin as defined by LAPACK::[SD]LAMCH, then
tol is replaced by sfmin - thus the default is tol=0.0, which effectively
means tol=sfmin.
virtual void DiagRecipScale( const HCL_Vector_d & x, const HCL_Vector_d & y, double tol=0.0)
- matrix division by diag(x).
Safeguarded against overflow - if tol is less
that the smallest safe divisor sfmin as defined by LAPACK::[SD]LAMCH, then
tol is replaced by sfmin - thus the default is tol=0.0, which effectively
means tol=sfmin.
virtual void DotStar( const HCL_Vector_d & x )
virtual void DotStar( const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual void DotSlash( const HCL_Vector_d & x, double tol=0.0)
virtual void DotSlash( const HCL_Vector_d & x, const HCL_Vector_d & y, double tol=0.0)
virtual double Max() const
virtual void Max( const HCL_Vector_d & x )
virtual void Max( const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual double Min() const
virtual void Min( const HCL_Vector_d & x )
virtual void Min( const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual double Sum() const
virtual void Abs()
virtual void Abs( const HCL_Vector_d & x )
virtual void Sign()
. Sign returns 1 for positive
arguments, -1 for negative arguments, and 0 for zero arguments.
virtual void Sign( double t )
virtual void Sign( const HCL_Vector_d & x )
virtual void Sign( const HCL_Vector_d & x, const HCL_Vector_d & y )
virtual void Sign( const HCL_Vector_d & x, double t )
virtual void Sign( double t, const HCL_Vector_d & y )
virtual void Greater( double t )
if
>
, else 0
virtual void Greater( const HCL_Vector_d & x )
if
>
, else 0
virtual void Greater( const HCL_Vector_d & x, const HCL_Vector_d & y )
if
>
, else 0
virtual void Greater( const HCL_Vector_d & x, double t )
if
>
, else 0
virtual void Greater( double t, const HCL_Vector_d & x )
if
>
, else 0
virtual void Power( double p )
- arbitrary real power.
Should only be invoked for nonintegral
when
, but have not found a good way to enforce
this constraint, so rely on runtime
virtual void Power( double p, const HCL_Vector_d & x )
- arbitrary real power.
should only be invoked for nonintegral
when
, but have not found a good way to enforce
this constraint, so rely on runtime
virtual void Sqrt()
- componentwise square root.
exits with error condition if any component is negative.
virtual void Sqrt( const HCL_Vector_d & x )
- componentwise square root.
exits with error condition if any component is negative.
virtual void Exp()
virtual void Exp( const HCL_Vector_d & x )
virtual void Log()
- componentwise natural log.
exits with error condition if any component is nonpositive.
virtual void Log( const HCL_Vector_d & x )
- componentwise natural log.
exits with error condition if any component is nonpositive.
alphabetic index hierarchy of classes
this page has been generated automatically by doc++
(c)opyright by Malte Zöckler, Roland Wunderling
contact: doc++@zib.de